Dynamic Sparse Training for Deep Reinforcement Learning

Ghada Sokar

Elena Mocanu

Decebal Constantin Mocanu

Mykola Pechenizkiy

Peter Stone

IJCAI 2022



Deep reinforcement learning (DRL) agents are trained through trial-and-error interactions with the environment. This leads to a long training time for dense neural networks to achieve good performance. Hence, prohibitive computation and memory resources are consumed. Recently, learning efficient DRL agents has received increasing attention. Yet, current methods focus on accelerating inference time. In this paper, we introduce for the first time a dynamic sparse training approach for deep reinforcement learning to accelerate the training process. The proposed approach trains a sparse neural network from scratch and dynamically adapts its topology to the changing data distribution during training. Experiments on continuous control tasks show that our dynamic sparse agents achieve higher performance than the equivalent dense methods, reduce the parameter count and floating-point operations (FLOPs) by 50%, and have a faster learning speed that enables reaching the performance of dense agents with 40-50% reduction in the training steps.

Related Publications

Benchmarking Reinforcement Learning Techniques for Autonomous Navigation

ICRA, 2023
Zifan Xu*, Bo Liu*, Xuesu Xiao*, Anirudh Nair*, Peter Stone

Deep reinforcement learning (RL) has broughtmany successes for autonomous robot navigation. However,there still exists important limitations that prevent real-worlduse of RL-based navigation systems. For example, most learningapproaches lack safety guarantees; and learned na…

Learning Perceptual Hallucination for Multi-Robot Navigation in Narrow Hallways

ICRA, 2023
Jin-Soo Park*, Xuesu Xiao*, Garrett Warnell*, Harel Yedidsion*, Peter Stone

While current systems for autonomous robot navigation can produce safe and efficient motion plans in static environments, they usually generate suboptimal behaviors when multiple robots must navigate together in confined spaces. For example, when two robots meet each other i…

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Neural Networks, 2023
Megan M. Baker*, Alexander New*, Mario Aguilar-Simon*, Ziad Al-Halah*, Sébastien M. R. Arnold*, Ese Ben-Iwhiwhu*, Andrew P. Brna*, Ethan Brooks*, Ryan C. Brown*, Zachary Daniels*, Anurag Daram*, Fabien Delattre*, Ryan Dellana*, Eric Eaton*, Haotian Fu*, Kristen Grauman*, Jesse Hostetler*, Shariq Iqbal*, Cassandra Kent*, Nicholas Ketz*, Soheil Kolouri*, George Konidaris*, Dhireesha Kudithipudi*, Seungwon Lee*, Michael L. Littman*, Sandeep Madireddy*, Jorge A. Mendez*, Eric Q. Nguyen*, Christine D. Piatko*, Praveen K. Pilly*, Aswin Raghavan*, Abrar Rahman*, Santhosh Kumar Ramakrishnan*, Neale Ratzlaff*, Andrea Soltoggio*, Peter Stone, Indranil Sur*, Zhipeng Tang*, Saket Tiwari*, Kyle Vedder*, Felix Wang*, Zifan Xu*, Angel Yanguas-Gil*, Harel Yedidsion*, Shangqun Yu*, Gautam K. Vallabha*

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and syst…


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.