Vikash
Sehwag

Publications

Masked Differential Privacy

ECCV, 2024
Sina Sajadmanesh, Vikash Sehwag, Lingjuan Lyu, Vivek Sharma, David Schneider, Saquib Sarfraz, Rainer Stiefelhagen

Privacy-preserving computer vision is an important emerg- ing problem in machine learning and artificial intelligence. The prevalent methods tackling this problem use differential privacy or anonymization and obfuscation techniques to protect the privacy of individuals. In b…

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization

ICML, 2024
Ashwinee Panda*, Xinyu Tang*, Vikash Sehwag, Saeed Mahloujifar*, Prateek Mittal*

An open problem in differentially private deep learning is hyperparameter optimization (HPO). DP-SGD introduces new hyperparameters and complicates existing ones, forcing researchers to painstakingly tune hyperparameters with hundreds of trials, which in turn makes it imposs…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.