Authors

* External authors

Venue

Date

Share

A self-interpretable module for deep image classification on small data

Jim Martin Catacora Ocaña*

Roberto Capobianco

Daniele Nardi*

* External authors

APIN

2023

Abstract

Deep neural networks are the driving force of the recent explosion of machine learning applications in everyday life. However, they usually require a lot of training data to work well, and they act as black-boxes, making predictions without any explanation about them. This paper presents Memory Wrap, a module (i.e, a set of layers) that can be added to deep learning models to improve their performance and interpretability in settings where few data are available. Memory Wrap adopts a sparse content-attention mechanism between the input and some memories of past training samples. We show that adding Memory Wrap to standard deep neural networks improves their performance when they learn from a limited set of data, and allows them to reach comparable performance when they learn from the full dataset. We discuss how the analysis of its structure and content-attention weights helps to get insights about its decision process and makes their predictions more interpretable, compared to the same networks without Memory Wrap. We test our approach on image classification tasks using several networks on three different datasets, namely CIFAR10, SVHN, and CINIC10.

Related Publications

DeepDFA: Automata Learning through Neural Probabilistic Relaxations

ECAI, 2025
Elena Umili*, Roberto Capobianco

In this work, we introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces, harnessing a differentiable yet discrete model. Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers …

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

ACC, 2024
Catherine Weaver*, Roberto Capobianco, Peter R. Wurman, Peter Stone, Masayoshi Tomizuka*

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equ…

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

  • HOME
  • Publications
  • A self-interpretable module for deep image classification on small data

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.