Authors

* External authors

Venue

Date

Share

An Overview of Environmental Features that Impact Deep Reinforcement Learning in Sparse-Reward Domains

Jim Martin Catacora Ocaña*

Roberto Capobianco

Daniele Nardi*

* External authors

JAIR

2023

Abstract

Deep reinforcement learning has achieved impressive results in recent years; yet, it is still severely troubled by environments showcasing sparse rewards. On top of that, not all sparse-reward environments are created equal, ie, they can differ in the presence or absence of various features, with many of them having a great impact on learning. In light of this, the present work puts together a literature compilation of such environmental features, covering particularly those that have been taken advantage of and those that continue to pose a challenge. We expect this effort to provide guidance to researchers for assessing the generality of their new proposals and to call their attention to issues that remain unresolved when dealing with sparse rewards.

Related Publications

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

ACC, 2024
Catherine Weaver*, Roberto Capobianco, Peter R. Wurman, Peter Stone, Masayoshi Tomizuka*

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equ…

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

Memory Replay For Continual Learning With Spiking Neural Networks

IEEE MSLP, 2023
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …

  • HOME
  • Publications
  • An Overview of Environmental Features that Impact Deep Reinforcement Learning in Sparse-Reward Domains

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.