Authors

* External authors

Venue

Date

Share

Autonomous Planetary Landing via Deep Reinforcement Learning and Transfer Learning

Giulia Ciabatti*

Shreyansh Daftry*

Roberto Capobianco

* External authors

CVPR-2021, AI4Space Workshop

2021

Abstract

The aim of this work is to develop an application for autonomous landing. We exploit the properties of Deep Reinforcement Learning and Transfer Learning, in order to tackle the problem of planetary landing on unknown or barely-known extra-terrestrial environments by learning good-performing policies, which are transferable from the training environment to other, new environments, without losing optimality. To this end, we model a real-physics simulator, by means of the Bullet/PyBullet library, composed by a lander, defined through the standard ROS/URDF framework and realistic 3D terrain models, for which we adapt official NASA 3D meshes, reconstructed from the data retrieved during missions. Where such model were not available, we reconstruct the terrain from mission imagery - generally SAR imagery. In this setup, we train a Deep Reinforcement Learning model - using DDPG - to autonomous land on the lunar environment. Moreover, we perform transfer learning on the Mars and Titan environment. While still preliminary, our results show that DDPG can learn a good landing policy, which can be transferred to other environments.

Related Publications

Identifying Candidates for Protein-Protein Interaction: A Focus on NKp46’s Ligands

EXPLIMED, 2025
Alessia Borghini, Federico Di Valerio, Alessio Ragno*, Roberto Capobianco

Recent advances in protein-protein interaction (PPI) research have harnessed the power of artificialintelligence (AI) to enhance our understanding of protein behaviour. These approaches have becomeindispensable tools in the field of biology and medicine, enabling scientists …

Neural Reward Machines

ECAI, 2025
Elena Umili*, Francesco Argenziano*, Roberto Capobianco

Non-markovian Reinforcement Learning (RL) tasks arevery hard to solve, because agents must consider the entire history ofstate-action pairs to act rationally in the environment. Most works usesymbolic formalisms (as Linear Temporal Logic or automata) to specify the temporall…

Transparent Explainable Logic Layers

ECAI, 2025
Alessio Ragno*, Marc Plantevit, Celine Robardet, Roberto Capobianco

Explainable AI seeks to unveil the intricacies of black box models through post-hoc strategies or self-interpretable models. In this paper, we tackle the problem of building layers that are intrinsically explainable through logical rules. In particular, we address current st…

  • HOME
  • Publications
  • Autonomous Planetary Landing via Deep Reinforcement Learning and Transfer Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.