Venue
- CVPR-2021, AI4Space Workshop
Date
- 2021
Autonomous Planetary Landing via Deep Reinforcement Learning and Transfer Learning
Giulia Ciabatti*
Shreyansh Daftry*
* External authors
CVPR-2021, AI4Space Workshop
2021
Abstract
The aim of this work is to develop an application for autonomous landing. We exploit the properties of Deep Reinforcement Learning and Transfer Learning, in order to tackle the problem of planetary landing on unknown or barely-known extra-terrestrial environments by learning good-performing policies, which are transferable from the training environment to other, new environments, without losing optimality. To this end, we model a real-physics simulator, by means of the Bullet/PyBullet library, composed by a lander, defined through the standard ROS/URDF framework and realistic 3D terrain models, for which we adapt official NASA 3D meshes, reconstructed from the data retrieved during missions. Where such model were not available, we reconstruct the terrain from mission imagery - generally SAR imagery. In this setup, we train a Deep Reinforcement Learning model - using DDPG - to autonomous land on the lunar environment. Moreover, we perform transfer learning on the Mars and Titan environment. While still preliminary, our results show that DDPG can learn a good landing policy, which can be transferred to other environments.
Related Publications
Providing neural networks with the ability to learn new tasks sequentially represents one of the main challenges in artificial intelligence. Unlike humans, neural networks are prone to losing previously acquired knowledge upon learning new information, a phenomenon known as …
Graph Neural Networks (GNNs) have proven their effectiveness in various graph-structured data applications. However, one of the significant challenges in the realm of GNNs is representation learning, a critical concept that bridges graph pooling, aimed at creating compressed…
Contextual integration is fundamental to human language comprehension. Language models are a powerful tool for studying how contextual information influences brain activity. In this work, we analyze the brain alignment of three types of language models, which vary in how the…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



