Authors

* External authors

Venue

Date

Share

Deep Reinforcement Learning for Pin-Point Autonomous Lunar Landing: Trajectory Recalculation for Obstacle Avoidance

Giulia Ciabatti*

Dario Spiller

Shreyansh Daftry*

Roberto Capobianco

Fabio Curti*

* External authors

AII 2022

2022

Abstract

This work aims to present a method to perform autonomous precision landing—pin-point landing—on a planetary environment and perform trajectory recalculation for fault recovery where necessary. In order to achieve this, we choose to implement a Deep Reinforcement Learning—DRL—algorithm, i.e. the Soft Actor-Critic—SAC—architecture. In particular, we select the lunar environment for our experiments, which we perform in a simulated environment, exploiting a real-physics simulator modeled by means of the Bullet/PyBullet physical engine. We show that the SAC algorithm can learn an effective policy for precision landing and trajectory recalculation if fault recovery is made necessary—e.g. for obstacle avoidance.

Related Publications

XAI-Guided Continual Learning: Rationale, Methods, and Future Directions

WIREs, 2025
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Providing neural networks with the ability to learn new tasks sequentially represents one of the main challenges in artificial intelligence. Unlike humans, neural networks are prone to losing previously acquired knowledge upon learning new information, a phenomenon known as …

Interpretable Memory-based Prototypical Pooling

WSDM, 2025
Alessio Ragno*, Roberto Capobianco

Graph Neural Networks (GNNs) have proven their effectiveness in various graph-structured data applications. However, one of the significant challenges in the realm of GNNs is representation learning, a critical concept that bridges graph pooling, aimed at creating compressed…

Intermediate Layers of LLMs Align Best With the Brain by Balancing Short- and Long-Range Information

CCN, 2025
Michela Proietti*, Roberto Capobianco, Mariya Toneva

Contextual integration is fundamental to human language comprehension. Language models are a powerful tool for studying how contextual information influences brain activity. In this work, we analyze the brain alignment of three types of language models, which vary in how the…

  • HOME
  • Publications
  • Deep Reinforcement Learning for Pin-Point Autonomous Lunar Landing: Trajectory Recalculation for Obstacle Avoidance

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.