Authors
- Giulia Ciabatti*
- Dario Spiller
- Shreyansh Daftry*
- Roberto Capobianco
- Fabio Curti*
* External authors
Venue
- AII 2022
Date
- 2022
Deep Reinforcement Learning for Pin-Point Autonomous Lunar Landing: Trajectory Recalculation for Obstacle Avoidance
Giulia Ciabatti*
Dario Spiller
Shreyansh Daftry*
Fabio Curti*
* External authors
AII 2022
2022
Abstract
This work aims to present a method to perform autonomous precision landing—pin-point landing—on a planetary environment and perform trajectory recalculation for fault recovery where necessary. In order to achieve this, we choose to implement a Deep Reinforcement Learning—DRL—algorithm, i.e. the Soft Actor-Critic—SAC—architecture. In particular, we select the lunar environment for our experiments, which we perform in a simulated environment, exploiting a real-physics simulator modeled by means of the Bullet/PyBullet physical engine. We show that the SAC algorithm can learn an effective policy for precision landing and trajectory recalculation if fault recovery is made necessary—e.g. for obstacle avoidance.
Related Publications
In this work, we introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces, harnessing a differentiable yet discrete model. Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers …
We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equ…
Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.