Authors
- Giulia Ciabatti*
- Dario Spiller
- Shreyansh Daftry*
- Roberto Capobianco
- Fabio Curti*
* External authors
Venue
- AII 2022
Date
- 2022
Deep Reinforcement Learning for Pin-Point Autonomous Lunar Landing: Trajectory Recalculation for Obstacle Avoidance
Giulia Ciabatti*
Dario Spiller
Shreyansh Daftry*
Fabio Curti*
* External authors
AII 2022
2022
Abstract
This work aims to present a method to perform autonomous precision landing—pin-point landing—on a planetary environment and perform trajectory recalculation for fault recovery where necessary. In order to achieve this, we choose to implement a Deep Reinforcement Learning—DRL—algorithm, i.e. the Soft Actor-Critic—SAC—architecture. In particular, we select the lunar environment for our experiments, which we perform in a simulated environment, exploiting a real-physics simulator modeled by means of the Bullet/PyBullet physical engine. We show that the SAC algorithm can learn an effective policy for precision landing and trajectory recalculation if fault recovery is made necessary—e.g. for obstacle avoidance.
Related Publications
Providing neural networks with the ability to learn new tasks sequentially represents one of the main challenges in artificial intelligence. Unlike humans, neural networks are prone to losing previously acquired knowledge upon learning new information, a phenomenon known as …
Graph Neural Networks (GNNs) have proven their effectiveness in various graph-structured data applications. However, one of the significant challenges in the realm of GNNs is representation learning, a critical concept that bridges graph pooling, aimed at creating compressed…
Contextual integration is fundamental to human language comprehension. Language models are a powerful tool for studying how contextual information influences brain activity. In this work, we analyze the brain alignment of three types of language models, which vary in how the…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



