Authors

* External authors

Venue

Date

Share

Detection Accuracy for Evaluating Compositional Explanations of Units

Sayo M. Makinwa*

Biagio La Rosa*

Roberto Capobianco

* External authors

AIxIA 2021

2021

Abstract

The recent success of deep learning models in solving complex problems and in different domains has increased interest in understanding what they learn. Therefore, different approaches have been employed to explain these models, one of which uses human-understandable concepts as explanations. Two examples of methods that use this approach are Network Dissection and Compositional explanations. The former explains units using atomic concepts, while the latter makes explanations more expressive, replacing atomic concepts with logical forms. While intuitively, logical forms are more informative than atomic concepts, it is not clear how to quantify this improvement, and their evaluation is often based on the same metric that is optimized during the search-process and on the usage of hyper-parameters to be tuned. In this paper, we propose to use as evaluation metric the Detection Accuracy, which measures units' consistency of detection of their assigned explanations. We show that this metric (1) evaluates explanations of different lengths effectively, (2) can be used as a stopping criterion for the compositional explanation search, eliminating the explanation length hyper-parameter, and (3) exposes new specialized units whose length 1 explanations are the perceptual abstractions of their longer explanations.

Related Publications

DeepDFA: Automata Learning through Neural Probabilistic Relaxations

ECAI, 2025
Elena Umili*, Roberto Capobianco

In this work, we introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces, harnessing a differentiable yet discrete model. Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers …

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

ACC, 2024
Catherine Weaver*, Roberto Capobianco, Peter R. Wurman, Peter Stone, Masayoshi Tomizuka*

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equ…

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

  • HOME
  • Publications
  • Detection Accuracy for Evaluating Compositional Explanations of Units

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.