Venue
- NeurIPS 2023
Date
- 2023
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang*
Ashwinee Panda*
Prateek Mittal*
* External authors
NeurIPS 2023
2023
Abstract
In privacy-preserving machine learning, differentially private stochastic gradient descent (DP-SGD) performs worse than SGD due to per-sample gradient clipping and noise addition.A recent focus in private learning research is improving the performance of DP-SGD on private data by incorporating priors that are learned on real-world public data.In this work, we explore how we can improve the privacy-utility tradeoff of DP-SGD by learning priors from images generated by random processes and transferring these priors to private data. We propose DP-RandP, a three-phase approach. We attain new state-of-the-art accuracy when training from scratch on CIFAR10, CIFAR100, and MedMNIST for a range of privacy budgets $\\varepsilon \\in [1, 8]$. In particular, we improve the previous best reported accuracy on CIFAR10 from $60.6 \\%$ to $72.3 \\%$ for $\\varepsilon=1$.
Related Publications
Privacy-preserving computer vision is an important emerg- ing problem in machine learning and artificial intelligence. The prevalent methods tackling this problem use differential privacy or anonymization and obfuscation techniques to protect the privacy of individuals. In b…
In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…
An open problem in differentially private deep learning is hyperparameter optimization (HPO). DP-SGD introduces new hyperparameters and complicates existing ones, forcing researchers to painstakingly tune hyperparameters with hundreds of trials, which in turn makes it imposs…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.