Venue

Date

Share

Expert Human-Level Driving in Gran Turismo Sport Using Deep Reinforcement Learning with Image-based Representation

Ryuji Imamura

Takuma Seno

Kenta Kawamoto

Michael Spranger

NeurIPS-2021, Deep RL Workshop

2021

Abstract

When humans play virtual racing games, they use visual environmental information on the game screen to understand the rules within the environments. In contrast, a state-of-the-art realistic racing game AI agent that outperforms human players does not use image-based environmental information but the compact and precise measurements provided by the environment. In this paper, a vision-based control algorithm is proposed and compared with human player performances under the same conditions in realistic racing scenarios using Gran Turismo Sport (GTS), which is known as a high-fidelity realistic racing simulator. In the proposed method, the environmental information that constitutes part of the observations in conventional state-of-the-art methods is replaced with feature representations extracted from game screen images. We demonstrate that the proposed method performs expert human-level vehicle control under high-speed driving scenarios even with game screen images as high-dimensional inputs. Additionally, it outperforms the built-in AI in GTS in a time trial task, and its score places it among the top 10% approximately 28,000 human players.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Residual-MPPI: Online Policy Customization for Continuous Control

ICLR, 2025
Pengcheng Wang, Chenran Li, Catherine Weaver*, Kenta Kawamoto, Masayoshi Tomizuka*, Chen Tang*, Wei Zhan*

Policies learned through Reinforcement Learning (RL) and ImitationLearning (IL) have demonstrated significant potential in achieving advanced performance in continuous control tasks. However, in real-world environments, itis often necessary to further customize a trained pol…

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

  • HOME
  • Publications
  • Expert Human-Level Driving in Gran Turismo Sport Using Deep Reinforcement Learning with Image-based Representation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.