Authors
- Ryuji Imamura
- Takuma Seno
- Kenta Kawamoto
- Michael Spranger
Venue
- NeurIPS-2021, Deep RL Workshop
Date
- 2021
Expert Human-Level Driving in Gran Turismo Sport Using Deep Reinforcement Learning with Image-based Representation
Ryuji Imamura
NeurIPS-2021, Deep RL Workshop
2021
Abstract
When humans play virtual racing games, they use visual environmental information on the game screen to understand the rules within the environments. In contrast, a state-of-the-art realistic racing game AI agent that outperforms human players does not use image-based environmental information but the compact and precise measurements provided by the environment. In this paper, a vision-based control algorithm is proposed and compared with human player performances under the same conditions in realistic racing scenarios using Gran Turismo Sport (GTS), which is known as a high-fidelity realistic racing simulator. In the proposed method, the environmental information that constitutes part of the observations in conventional state-of-the-art methods is replaced with feature representations extracted from game screen images. We demonstrate that the proposed method performs expert human-level vehicle control under high-speed driving scenarios even with game screen images as high-dimensional inputs. Additionally, it outperforms the built-in AI in GTS in a time trial task, and its score places it among the top 10% approximately 28,000 human players.
Related Publications
Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…
Autonomous racing poses a significant challenge for control, requiring planning minimum-time trajectories under uncertain dynamics and controlling vehicles at their handling limits. Current methods requiring hand-designed physical models or reward functions specific to each …
Hierarchical reinforcement learning (RL) can accelerate long-horizon decision-making by temporally abstracting a policy into multiple levels. Promising results in sparse reward environments have been seen with skills , i.e. sequences of primitive actions. Typically, a skill …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.