Venue

Date

Share

Expert Human-Level Driving in Gran Turismo Sport Using Deep Reinforcement Learning with Image-based Representation

Ryuji Imamura

Takuma Seno

Kenta Kawamoto

Michael Spranger

NeurIPS-2021, Deep RL Workshop

2021

Abstract

When humans play virtual racing games, they use visual environmental information on the game screen to understand the rules within the environments. In contrast, a state-of-the-art realistic racing game AI agent that outperforms human players does not use image-based environmental information but the compact and precise measurements provided by the environment. In this paper, a vision-based control algorithm is proposed and compared with human player performances under the same conditions in realistic racing scenarios using Gran Turismo Sport (GTS), which is known as a high-fidelity realistic racing simulator. In the proposed method, the environmental information that constitutes part of the observations in conventional state-of-the-art methods is replaced with feature representations extracted from game screen images. We demonstrate that the proposed method performs expert human-level vehicle control under high-speed driving scenarios even with game screen images as high-dimensional inputs. Additionally, it outperforms the built-in AI in GTS in a time trial task, and its score places it among the top 10% approximately 28,000 human players.

Related Publications

Outracing Champion Gran Turismo Drivers with Deep Reinforcement Learning

Nature, 2022
Pete Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, Hao Chih Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead Amago, Peter Dürr, Peter Stone, Michael Spranger, Hiroaki Kitano

Many potential applications of artificial intelligence involve making real-time decisions in physical systems while interacting with humans. Automobile racing represents an extreme example of these conditions; drivers must execute complex tactical manoeuvres to pass or block…

Logic Tensor Networks

Artificial Intelligence, 2022
Samy Badreddine, Artur d'Avila Garcez*, Luciano Serafini*, Michael Spranger

Attempts at combining logic and neural networks into neurosymbolic approaches have been on the increase in recent years. In a neurosymbolic system, symbolic knowledge assists deep learning, which typically uses a sub-symbolic distributed representation, to learn and reason a…

d3rlpy: An Offline Deep Reinforcement Learning Library

NeurIPS, 2021
Takuma Seno, Michita Imai*

In this paper, we introduce d3rlpy, an open-sourced offline deep reinforcement learning (RL) library for Python. d3rlpy supports a number of offline deep RL algorithms as well as online algorithms via a user-friendly API. To assist deep RL research and development projects, …

  • HOME
  • Publications
  • Expert Human-Level Driving in Gran Turismo Sport Using Deep Reinforcement Learning with Image-based Representation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.