Authors

* External authors

Venue

Date

Share

Grounding LTLf Specifcations in Image Sequences

Elena Umili*

Roberto Capobianco

Giuseppe De Giacomo*

* External authors

KR 2023

2023

Abstract

A critical challenge in neuro-symbolic (NeSy) approaches is to handle the symbol grounding problem without direct supervision. That is mapping high-dimensional raw data into an interpretation over a finite set of abstract concepts with a known meaning, without using labels. In this work, we ground symbols into sequences of images by exploiting symbolic logical knowledge in the form of Linear Temporal Logic over finite traces (LTLf) formulas, and sequence-level labels expressing if a sequence of images is compliant or not with the given formula. Our approach is based on translating the LTLf formula into an equivalent deterministic finite automaton (DFA) and interpreting the latter in fuzzy logic. Experiments show that our system outperforms recurrent neural networks in sequence classification and can reach high image classification accuracy without being trained with any single-image label.

Related Publications

DeepDFA: Automata Learning through Neural Probabilistic Relaxations

ECAI, 2025
Elena Umili*, Roberto Capobianco

In this work, we introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces, harnessing a differentiable yet discrete model. Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers …

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

ACC, 2024
Catherine Weaver*, Roberto Capobianco, Peter R. Wurman, Peter Stone, Masayoshi Tomizuka*

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equ…

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.