Authors

* External authors

Venue

Date

Share

Grounding LTLf specifications in images

Elena Umili*

Roberto Capobianco

Giuseppe De Giacomo*

* External authors

NeSy 2022

2022

Abstract

A critical challenge in neurosymbolic approaches is to handle the symbol grounding problem without direct supervision. That is mapping high-dimensional raw data into an interpretation over a finite set of abstract concepts with a known meaning, without using labels. In this work, we ground symbols into sequences of images by exploiting symbolic logical knowledge in the form of Linear Temporal Logic over finite traces (LTLf) formulas, and sequence-level labels expressing if a sequence of images is compliant or not with the given formula. Our approach is based on translating the LTLf formula into an equivalent deterministic finite automaton (DFA) and interpreting the latter in fuzzy logic. Experiments show that our system outperforms recurrent neural networks in sequence classification and can reach high image classification accuracy without being trained with any single-image label.

Related Publications

Identifying Candidates for Protein-Protein Interaction: A Focus on NKp46’s Ligands

EXPLIMED, 2025
Alessia Borghini, Federico Di Valerio, Alessio Ragno*, Roberto Capobianco

Recent advances in protein-protein interaction (PPI) research have harnessed the power of artificialintelligence (AI) to enhance our understanding of protein behaviour. These approaches have becomeindispensable tools in the field of biology and medicine, enabling scientists …

Neural Reward Machines

ECAI, 2025
Elena Umili*, Francesco Argenziano*, Roberto Capobianco

Non-markovian Reinforcement Learning (RL) tasks arevery hard to solve, because agents must consider the entire history ofstate-action pairs to act rationally in the environment. Most works usesymbolic formalisms (as Linear Temporal Logic or automata) to specify the temporall…

Transparent Explainable Logic Layers

ECAI, 2025
Alessio Ragno*, Marc Plantevit, Celine Robardet, Roberto Capobianco

Explainable AI seeks to unveil the intricacies of black box models through post-hoc strategies or self-interpretable models. In this paper, we tackle the problem of building layers that are intrinsically explainable through logical rules. In particular, we address current st…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.