Venue
- Interspeech 2023
Date
- 2023
Iteratively Improving Speech Recognition and Voice Conversion
Mayank Kumar Singh*
Onoe Naoyuki*
* External authors
Interspeech 2023
2023
Abstract
Many existing works on voice conversion (VC) tasks use automatic speech recognition (ASR) models for ensuring linguistic consistency between source and converted samples. However, for the low-data resource domains, training a high-quality ASR remains to be a challenging task. In this work, we propose a novel iterative way of improving both the ASR and VC models. We first train an ASR model which is used to ensure content preservation while training a VC model. In the next iteration, the VC model is used as a data augmentation method to further fine-tune the ASR model and generalize it to diverse speakers. By iteratively leveraging the improved ASR model to train VC model and vice-versa, we experimentally show improvement in both the models. Our proposed framework outperforms the ASR and one-shot VC baseline models on English singing and Hindi speech domains in subjective and objective evaluations in low-data resource settings.
Related Publications
This paper presents the crossing scheme (X-scheme) for improving the performance of deep neural network (DNN)-based music source separation (MSS) with almost no increasing calculation cost. It consists of three components: (i) multi-domain loss (MDL), (ii) bridging operation…
In the realm of audio watermarking, it is challenging to simultaneously encode imperceptible messages while enhancing the message capacity and robustness. Although recent advancements in deep learning-based methods bolster the message capacity and robustness over traditional…
While direction of arrival (DOA) of sound events is generally estimated from multichannel audio data recorded in a microphone array, sound events usually derive from visually perceptible source objects, e.g., sounds of footsteps come from the feet of a walker. This paper pro…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.