Authors

* External authors

Venue

Date

Share

Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal

Eleonora Proia*

Alessio Ragno*

Lorenzo Antonini*

Manuela Sabatino*

Milan Mladenovič*

Roberto Capobianco

Rino Ragno*

* External authors

Journal of Computer-Aided Molecular Design

2022

Abstract

The main protease (Mpro) of SARS-Cov-2 is the essential enzyme for maturation of functional proteins implicated in viral replication and transcription. The peculiarity of its specific cleavage site joint with its high degree of conservation among all coronaviruses promote it as an attractive target to develop broad-spectrum inhibitors, with high selectivity and tolerable safety profile. Herein is reported a combination of three-dimensional quantitative structure–activity relationships (3-D QSAR) and comparative molecular binding energy (COMBINE) analysis to build robust and predictive ligand-based and structure-based statistical models, respectively. Models were trained on experimental binding poses of co-crystallized Mpro-inhibitors and validated on available literature data. By means of deep optimization both models’ goodness and robustness reached final statistical values of r2/q2 values of 0.97/0.79 and 0.93/0.79 for the 3-D QSAR and COMBINE approaches respectively, and an overall predictiveness values of 0.68 and 0.57 for the SDEPPRED and AAEP metrics after application to a test set of 60 compounds covered by the training set applicability domain. Despite the different nature (ligand-based and structure-based) of the employed methods, their outcome fully converged. Furthermore, joint ligand- and structure-based structure–activity relationships were found in good agreement with nirmatrelvir chemical features properties, a novel oral Mpro-inhibitor that has recently received U.S. FDA emergency use authorization (EUA) for the oral treatment of mild-to-moderate COVID-19 infected patients. The obtained results will guide future rational design and/or virtual screening campaigns with the aim of discovering new potential anti-coronavirus lead candidates, minimizing both time and financial resources. Moreover, as most of calculation were performed through the well-established web portal 3d-qsar.com the results confirm the portal as a useful tool for drug design.

Related Publications

Towards a fuller understanding of neurons with Clustered Compositional Explanations

NeurIPS, 2023
Biagio La Rosa*, Leilani H. Gilpin*, Roberto Capobianco

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking c…

Memory Replay For Continual Learning With Spiking Neural Networks

IEEE MSLP, 2023
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …

Explainable AI in drug discovery: self-interpretable graph neural network for molecular property prediction using concept whi…

Machine Learning, 2023
Michela Proietti*, Alessio Ragno*, Biagio La Rosa*, Rino Ragno*, Roberto Capobianco

Molecular property prediction is a fundamental task in the field of drug discovery. Several works use graph neural networks to leverage molecular graph representations. Although they have been successfully applied in a variety of applications, their decision process is not t…

  • HOME
  • Publications
  • Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.