Venue
- Artificial Intelligence (journal, Elsevier)
Date
- 2022
Logic Tensor Networks
Artur d'Avila Garcez*
Luciano Serafini*
* External authors
Artificial Intelligence (journal, Elsevier)
2022
Abstract
Attempts at combining logic and neural networks into neurosymbolic approaches have been on the increase in recent years. In a neurosymbolic system, symbolic knowledge assists deep learning, which typically uses a sub-symbolic distributed representation, to learn and reason at a higher level of abstraction. We present Logic Tensor Networks (LTN), a neurosymbolic framework that supports querying, learning and reasoning with both rich data and abstract knowledge about the world. LTN introduces a fully differentiable logical language, called Real Logic, whereby the elements of a first-order logic signature are grounded onto data using neural computational graphs and firstorder fuzzy logic semantics. We show that LTN provides a uniform language to represent and compute efficiently many of the most important AI tasks such as multilabel classification, relational learning, data clustering, semi-supervised learning, regression, embedding learning and query answering. We implement and illustrate each of the above tasks with several simple explanatory examples using TensorFlow 2. The results indicate that LTN can be a general and powerful framework for
neurosymbolic AI.
Related Publications
Many potential applications of artificial intelligence involve making real-time decisions in physical systems while interacting with humans. Automobile racing represents an extreme example of these conditions; drivers must execute complex tactical manoeuvres to pass or block…
When humans play virtual racing games, they use visual environmental information on the game screen to understand the rules within the environments. In contrast, a state-of-the-art realistic racing game AI agent that outperforms human players does not use image-based environ…
Countless possibilities of recipe combinations challenge us to determine which additional ingredient goes well with others. In this work, we propose RecipeBowl which is a cooking recommendation system that takes a set of ingredients and cooking tags as input and suggests pos…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.