Authors

* External authors

Venue

Date

Share

Model-based Reinforcement Learning with Scalable Composite Policy Gradient Estimators

Paavo Parmas*

Takuma Seno

Yuma Aoki*

* External authors

ICML 2023

2023

Abstract

In model-based reinforcement learning (MBRL), policy gradients can be estimated either by derivative-free RL methods, such as likelihood ratio gradients (LR), or by backpropagating through a differentiable model via reparameterization gradients (RP). Instead of using one or the other, the Total Propagation (TP) algorithm in prior work showed that a combination of LR and RP estimators averaged using inverse variance weighting (IVW) can achieve orders of magnitude improvement over either method. However, IVW-based composite estimators have not yet been applied in modern RL tasks, as it is unclear if they can be implemented scalably. We propose a scalable method, Total Propagation X (TPX) that improves over TP by changing the node used for IVW, and employing coordinate wise weighting. We demonstrate the scalability of TPX by applying it to the state of the art visual MBRL algorithm Dreamer. The experiments showed that Dreamer fails with long simulation horizons, while our TPX works reliably for only a fraction of additional computation. One key advantage of TPX is its ease of implementation, which will enable experimenting with IVW on many tasks beyond MBRL.

Related Publications

Hyperspherical Normalization for Scalable Deep Reinforcement Learning

ICML, 2025
Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, Jaegul Choo

Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…

A Champion-level Vision-based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

RA-L, 2025
Hojoon Lee, Takuma Seno, Jun Jet Tai, Kaushik Subramanian, Kenta Kawamoto, Peter Stone, Peter R. Wurman

Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

  • HOME
  • Publications
  • Model-based Reinforcement Learning with Scalable Composite Policy Gradient Estimators

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.