Authors

* External authors

Venue

Date

Share

Nonparallel Emotional Voice Conversion for unseen speaker-emotion pairs using dual domain adversarial network Virtual Domain Pairing

Nirmesh Shah*

Mayank Kumar Singh*

Naoya Takahashi

Naoyuki Onoe*

* External authors

ICASSP 2023

2023

Abstract

Primary goal of an emotional voice conversion (EVC) system is to convert the emotion of a given speech signal from one style to another style without modifying the linguistic content of the signal. Most of the state-of-the-art approaches convert emotions for seen speaker-emotion combinations only. In this paper, we tackle the problem of converting the emotion of speakers whose only neutral data are present during the time of training and testing (i.e., unseen speaker-emotion combinations). To this end, we extend a recently proposed StartGANv2-VC architecture by utilizing dual encoders for learning the speaker and emotion style embeddings separately along with dual domain source classifiers. For achieving the conversion to unseen speaker-emotion combinations, we propose a Virtual Domain Pairing (VDP) training strategy, which virtually incorporates the speaker-emotion pairs that are not present in the real data without compromising the min-max game of a discriminator and generator in adversarial training. We evaluate the proposed method using a Hindi emotional database.

Related Publications

REWIND: Speech Time Reversal for Enhancing Speaker Representations in Diffusion-based Voice Conversion

Interspeech, 2026
Ishan Biyani, Nirmesh Shah*, Ashishkumar Gudmalwar, Pankaj Wasnik, Rajiv Ratn Shah

Speech time reversal refers to the process of reversing the entire speech signal in time, causing it to play backward. Such signals are completely unintelligible since the fundamental structures of phonemes and syllables are destroyed. However, they still retain tonal patter…

A Comprehensive Real-World Assessment of Audio Watermarking Algorithms: Will They Survive Neural Codecs?

Interspeech, 2025
Yigitcan Özer, Woosung Choi, Joan Serrà, Mayank Kumar Singh*, Wei-Hsiang Liao, Yuki Mitsufuji

We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with var…

LOCKEY: A Novel Approach to Model Authentication and Deepfake Tracking

NeurIPS, 2025
Mayank Kumar Singh*, Naoya Takahashi, Wei-Hsiang Liao, Yuki Mitsufuji

This paper presents a novel approach to deter unauthorized deepfakes and enable user tracking in generative models, even when the user has full access to the model parameters, by integrating key-based model authentication with watermarking techniques. Our method involves pro…

  • HOME
  • Publications
  • Nonparallel Emotional Voice Conversion for unseen speaker-emotion pairs using dual domain adversarial network Virtual Domain Pairing

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.