Authors

* External authors

Venue

Date

Share

Open-Set Object Detection By Aligning Known Class Representations

Vishal Chudasama

Naoyuki Onoe*

Pankaj Wasnik

Hiran Sarkar

Vineeth N Balasubramanian

* External authors

WACV-24

2025

Abstract

Open-Set Object Detection (OSOD) has emerged as a contemporary research direction to address the detection of unknown objects. Recently, few works have achieved remarkable performance in the OSOD task by employing contrastive clustering to separate unknown classes. In contrast, we propose a new semantic clustering-based approach to facilitate a meaningful alignment of clusters in semantic space and introduce a class decorrelation module to enhance inter-cluster separation. Our approach further incorporates an object focus module to predict objectness scores, which enhances the detection of unknown objects. Further, we employ i) an evaluation technique that penalizes lowconfidence outputs to mitigate the risk of misclassification of the unknown objects and ii) a new metric called HMP that combines known and unknown precision using harmonic mean. Our extensive experiments demonstrate that the proposed model achieves significant improvement on the MS-COCO & PASCAL VOC dataset for the OSOD task.

Related Publications

In-Domain African Languages Translation Using LLMs and Multi-armed Bandits

ACL, 2025
Pratik Rakesh Singh, Kritarth Prasad, Mohammadi Zaki, Pankaj Wasnik

Neural Machine Translation (NMT) systems face significant challenges when working with low-resource languages, particularly in domain adaptation tasks. These difficulties arise due to limited training data and suboptimal model generalization, As a result, selecting an opti- …

Graph-Assisted Culturally Adaptable Idiomatic Translation for Indic languages

ACL, 2025
Pratik Rakesh Singh, Kritarth Prasad, Mohammadi Zaki, Pankaj Wasnik

Translating multi-word expressions (MWEs) and idioms requires a deep understanding of the cultural nuances of both the source and target languages. This challenge is further amplified by the one-to-many nature of idiomatic translations, where a single source idiom can have m…

DuET: Dual Incremental Object Detection via Exemplar-Free Task Arithmetic

ICCV, 2025
Munish Monga, Vishal Chudasama, Pankaj Wasnik, Biplab Banerjee*

Real-world object detection systems, such as those in autonomous driving and surveillance, must continuously learn new object categories and simultaneously adapt to changing environmental conditions. Existing approaches, Class Incremental Object Detection (CIOD) and Domain I…

  • HOME
  • Publications
  • Open-Set Object Detection By Aligning Known Class Representations

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.