Authors

* External authors

Venue

Date

Share

Open-Set Object Detection By Aligning Known Class Representations

Vishal Chudasama

Naoyuki Onoe*

Pankaj Wasnik

Hiran Sarkar

Vineeth N Balasubramanian

* External authors

WACV-24

2025

Abstract

Open-Set Object Detection (OSOD) has emerged as a contemporary research direction to address the detection of unknown objects. Recently, few works have achieved remarkable performance in the OSOD task by employing contrastive clustering to separate unknown classes. In contrast, we propose a new semantic clustering-based approach to facilitate a meaningful alignment of clusters in semantic space and introduce a class decorrelation module to enhance inter-cluster separation. Our approach further incorporates an object focus module to predict objectness scores, which enhances the detection of unknown objects. Further, we employ i) an evaluation technique that penalizes lowconfidence outputs to mitigate the risk of misclassification of the unknown objects and ii) a new metric called HMP that combines known and unknown precision using harmonic mean. Our extensive experiments demonstrate that the proposed model achieves significant improvement on the MS-COCO & PASCAL VOC dataset for the OSOD task.

Related Publications

Cross-Modal Fusion and Attention Mechanism for Weakly Supervised Video Anomaly Detection

CVPRW, 2025
Ayush Ghadiya, Purbayan Kar, Vishal Chudasama, Pankaj Wasnik

Recently, weakly supervised video anomaly detection (WS-VAD) has emerged as a contemporary research direction to identify anomaly events like violence and nudity in videos using only video-level labels. However, this task has substantial challenges, including addressing imba…

Enhancing Whisper's Accuracy and Speed for Indian Languages through Prompt-Tuning and Tokenization

ICASSP, 2025
Pankaj Wasnik, Kumud Tripathi, Raj Gothi

Automatic speech recognition has recently seen a significant advancement with large foundational models such as Whisper. However, these models often struggle to perform well in low-resource languages, such as Indian languages. This paper explores two novel approaches to enha…

EmoReg: Directional Latent Vector Modeling for Emotional Intensity Regularization in Diffusion-based Voice Conversion

AAAI, 2025
Ashishkumar Gudmalwar, Nirmesh Shah*, Pankaj Wasnik, Ishan Biyani, Rajiv R. Shah

The Emotional Voice Conversion (EVC) aims to convert the discrete emotional state from the source emotion to the target for a given speech utterance while preserving linguistic content. In this paper, we propose regularizing emotion intensity in the diffusion-based EVC frame…

  • HOME
  • Publications
  • Open-Set Object Detection By Aligning Known Class Representations

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.