Authors

* External authors

Venue

Date

Share

Planetary Environment Prediction Using Generative Modeling

Shrijit Singh*

Shreyansh Daftry*

Roberto Capobianco

* External authors

AIAA SciTech Forum 2022

2022

Abstract

Planetary rovers have a limited sensory horizon and operate in environments where limited information about the surrounding terrain is available. The rough and unknown nature of the terrain in planetary environments potentially leads to scenarios where the rover gets stuck
and has to replan its path frequently to escape such situations. For avoiding such scenarios,
we need to exploit spatial knowledge of the environment beyond the rover’s sensor horizon.
The solutions presented by existing approaches are limited to indoor environments which are
structured. Predicting spatial knowledge for outdoor environments, particularly planetary
environments, has not be done before. We attempt to solve planetary environment prediction
by exploiting generative learning to (1) learn the distribution of spatial landmarks like rocks
and craters which the rover encounter on the planetary surface during exploration and (2)
predict spatial landmarks beyond the sensor horizon. We aim to utilize the proposed approach
of environment prediction to improve path planning and decision-making processes needed for
safe planetary navigation.

Related Publications

Identifying Candidates for Protein-Protein Interaction: A Focus on NKp46’s Ligands

EXPLIMED, 2025
Alessia Borghini, Federico Di Valerio, Alessio Ragno*, Roberto Capobianco

Recent advances in protein-protein interaction (PPI) research have harnessed the power of artificialintelligence (AI) to enhance our understanding of protein behaviour. These approaches have becomeindispensable tools in the field of biology and medicine, enabling scientists …

Neural Reward Machines

ECAI, 2025
Elena Umili*, Francesco Argenziano*, Roberto Capobianco

Non-markovian Reinforcement Learning (RL) tasks arevery hard to solve, because agents must consider the entire history ofstate-action pairs to act rationally in the environment. Most works usesymbolic formalisms (as Linear Temporal Logic or automata) to specify the temporall…

Transparent Explainable Logic Layers

ECAI, 2025
Alessio Ragno*, Marc Plantevit, Celine Robardet, Roberto Capobianco

Explainable AI seeks to unveil the intricacies of black box models through post-hoc strategies or self-interpretable models. In this paper, we tackle the problem of building layers that are intrinsically explainable through logical rules. In particular, we address current st…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.