Authors

* External authors

Venue

Date

Share

Prototype-based Interpretable Graph Neural Networks

Alessio Ragno*

Biagio La Rosa*

Roberto Capobianco

* External authors

IEEE TAI

2022

Abstract

Graph neural networks have proved to be a key tool for dealing with many problems and domains such as chemistry, natural language processing and social networks. While the structure of the layers is simple, it is difficult to identify the patterns learned by the graph neural network. Several works propose post-hoc methods to explain graph predictions, but few of them try to generate interpretable models. Conversely, the topic of the interpretable models is highly investigated in image recognition. Given the similarity between image and graph domains, we analyze the adaptability of prototype-based neural networks for graph and node classification. In particular, we investigate the use of two interpretable networks, ProtoPNet and TesNet, in the graph domain. We show that the adapted networks manage to reach better or higher accuracy scores than their respective black-box models and comparable performances with state-of-the-art self-explainable models. Showing how to extract ProtoPNet and TesNet explanations on graph neural networks, we further study how to obtain global and local explanations for the trained models. We then evaluate the explanations of the interpretable models by comparing them with post-hoc approaches and self-explainable models. Our findings show that the application of TesNet and ProtoPNet to the graph domain produces qualitative predictions while improving their reliability and transparency

Related Publications

Identifying Candidates for Protein-Protein Interaction: A Focus on NKp46’s Ligands

EXPLIMED, 2025
Alessia Borghini, Federico Di Valerio, Alessio Ragno*, Roberto Capobianco

Recent advances in protein-protein interaction (PPI) research have harnessed the power of artificialintelligence (AI) to enhance our understanding of protein behaviour. These approaches have becomeindispensable tools in the field of biology and medicine, enabling scientists …

Neural Reward Machines

ECAI, 2025
Elena Umili*, Francesco Argenziano*, Roberto Capobianco

Non-markovian Reinforcement Learning (RL) tasks arevery hard to solve, because agents must consider the entire history ofstate-action pairs to act rationally in the environment. Most works usesymbolic formalisms (as Linear Temporal Logic or automata) to specify the temporall…

Transparent Explainable Logic Layers

ECAI, 2025
Alessio Ragno*, Marc Plantevit, Celine Robardet, Roberto Capobianco

Explainable AI seeks to unveil the intricacies of black box models through post-hoc strategies or self-interpretable models. In this paper, we tackle the problem of building layers that are intrinsically explainable through logical rules. In particular, we address current st…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.