Authors

* External authors

Venue

Date

Share

SIMBA: Split Inference - Mechanisms, Benchmarks and Attacks

Abhishek Singh*

Vivek Sharma

Ramesh Raskar*

Rohan Sukumaran

John Mose

Jeffrey Chiu

Justin Yu

* External authors

ECCV-24

2024

Abstract

In this work, we tackle the question of how to benchmark reconstruction of inputs from deep neural networks (DNN) representations. This inverse problem is of great importance in the privacy community where obfuscation of features has been proposed as a technique for privacy-preserving machine learning (ML) inference. In this benchmark, we characterize different obfuscation techniques and design different attack models. We propose multiple reconstruction techniques based upon distinct background knowledge of the adversary. We develop a modular platform that integrates different obfuscation techniques, reconstruction algorithms, and evaluation metrics under a common framework. Using our platform, we benchmark various obfuscation and reconstruction techniques for evaluating their privacy-utility trade-off. Finally, we release a dataset of obfuscated representations to foster research in this area.

Related Publications

Argus: A Compact and Versatile Foundation Model for Vision

CVPR, 2025
Weiming Zhuang, Chen Chen, Zhizhong Li, Sina Sajadmanesh, Jingtao Li, Jiabo Huang, Vikash Sehwag, Vivek Sharma, Hirotaka Shinozaki, Felan Carlo Garcia, Yihao Zhan, Naohiro Adachi, Ryoji Eki, Michael Spranger, Peter Stone, Lingjuan Lyu

While existing vision and multi-modal foundation models can handle multiple computer vision tasks, they often suffer from significant limitations, including huge demand for data and computational resources during training and inconsistent performance across vision tasks at d…

DECO-Bench: Unified Benchmark for Decoupled Task-Agnostic Synthetic Data Release

NeurIPS, 2024
Lingjuan Lyu, Vivek Sharma, Farzaneh Askari

In this work, we tackle the question of how to systematically benchmark task-agnostic decoupling methods for privacy-preserving machine learning (ML). Sharing datasets that include sensitive information often triggers privacy concerns, necessitating robust decoupling methods…

Masked Differential Privacy

ECCV, 2024
Sina Sajadmanesh, Vikash Sehwag, Lingjuan Lyu, Vivek Sharma, David Schneider, Saquib Sarfraz, Rainer Stiefelhagen

Privacy-preserving computer vision is an important emerg- ing problem in machine learning and artificial intelligence. The prevalent methods tackling this problem use differential privacy or anonymization and obfuscation techniques to protect the privacy of individuals. In b…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.