Authors

* External authors

Venue

Date

Share

T50: T-PAIR: Temporal Node-pair Embedding for Automatic Biomedical Hypothesis Generation (Extended abstract)

Uchenna Akujuobi

Michael Spranger

Sucheendra Palaniappan*

Xiangliang Zhang*

* External authors

ICDE 2023

2023

Abstract

In this paper, we study an automatic hypothesis generation (HG) problem, which refers to the discovery of meaningful implicit connections between scientific terms, including but not limited to diseases, chemicals, drugs, and genes extracted from databases of biomedical publications. Most prior studies of this problem focused on using static information of terms and largely ignored the temporal dynamics of scientific term relations.
Even when the dynamics were considered in a few recent studies, they learned the representations for the scientific terms rather than focusing on the term-pair relations. Since the HG problem is to predict term-pair connections, it is not enough to know with whom the terms are connected}; it is more important to know how the connections have been formed (in a dynamic process). We formulate this HG problem as a future connectivity prediction in a dynamic attributed graph and propose an inductive edge (node pair) embedding method named T-PAIR, utilizing both the graphical structure and node attribute to encode the temporal node pair relationship. We demonstrate the efficiency of the proposed model on real-world biomedical datasets in predicting future term-pair relations between millions of seen terms (in the transductive setting), as well as on the relations involving unseen terms (in the inductive setting).

Related Publications

Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget

CVPR, 2025
Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, Lingjuan Lyu

As scaling laws in generative AI push performance, they simultaneously concentrate the development of these models among actors with large computational resources. With a focus on text-to-image (T2I) generative models, we aim to unlock this bottleneck by demonstrating very l…

Argus: A Compact and Versatile Foundation Model for Vision

CVPR, 2025
Weiming Zhuang, Chen Chen, Zhizhong Li, Sina Sajadmanesh, Jingtao Li, Jiabo Huang, Vikash Sehwag, Vivek Sharma, Hirotaka Shinozaki, Felan Carlo Garcia, Yihao Zhan, Naohiro Adachi, Ryoji Eki, Michael Spranger, Peter Stone, Lingjuan Lyu

While existing vision and multi-modal foundation models can handle multiple computer vision tasks, they often suffer from significant limitations, including huge demand for data and computational resources during training and inconsistent performance across vision tasks at d…

Revisiting named entity recognition in food computing: enhancing performance and robustness

AIR, 2024
Uchenna Akujuobi, Shuhong Liu*, Tarek R Besold

In the ever-evolving domain of food computing, named entity recognition (NER) presents transformative potential that extends far beyond mere word tagging in recipes. Its implications encompass intelligent recipe recommendations, health analysis, and personalization. Neverthe…

  • HOME
  • Publications
  • T50: T-PAIR: Temporal Node-pair Embedding for Automatic Biomedical Hypothesis Generation (Extended abstract)

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.