Authors

* External authors

Venue

Date

Share

T50: T-PAIR: Temporal Node-pair Embedding for Automatic Biomedical Hypothesis Generation (Extended abstract)

Uchenna Akujuobi

Michael Spranger

Sucheendra Palaniappan*

Xiangliang Zhang*

* External authors

ICDE 2023

2023

Abstract

In this paper, we study an automatic hypothesis generation (HG) problem, which refers to the discovery of meaningful implicit connections between scientific terms, including but not limited to diseases, chemicals, drugs, and genes extracted from databases of biomedical publications. Most prior studies of this problem focused on using static information of terms and largely ignored the temporal dynamics of scientific term relations.
Even when the dynamics were considered in a few recent studies, they learned the representations for the scientific terms rather than focusing on the term-pair relations. Since the HG problem is to predict term-pair connections, it is not enough to know with whom the terms are connected}; it is more important to know how the connections have been formed (in a dynamic process). We formulate this HG problem as a future connectivity prediction in a dynamic attributed graph and propose an inductive edge (node pair) embedding method named T-PAIR, utilizing both the graphical structure and node attribute to encode the temporal node pair relationship. We demonstrate the efficiency of the proposed model on real-world biomedical datasets in predicting future term-pair relations between millions of seen terms (in the transductive setting), as well as on the relations involving unseen terms (in the inductive setting).

Related Publications

Revisiting named entity recognition in food computing: enhancing performance and robustness

AIR, 2024
Uchenna Akujuobi, Shuhong Liu*, Tarek R Besold

In the ever-evolving domain of food computing, named entity recognition (NER) presents transformative potential that extends far beyond mere word tagging in recipes. Its implications encompass intelligent recipe recommendations, health analysis, and personalization. Neverthe…

Link prediction for hypothesis generation: an active curriculum learning infused temporal graph-based approach

AIR, 2024
Uchenna Akujuobi, Priyadarshini Kumari, Jihun Choi, Samy Badreddine, Kana Maruyama, Sucheendra K Palaniappan*, Tarek R Besold

Over the last few years Literature-based Discovery (LBD) has regained popularity as a means to enhance the scientific research process. The resurgent interest has spurred the development of supervised and semi-supervised machine learning models aimed at making previously imp…

It is Simple Sometimes: A Study On Improving Aspect-Based Sentiment Analysis Performance

ACL, 2024
Laura Cabello*, Uchenna Akujuobi

Aspect-Based Sentiment Analysis (ABSA) involves extracting opinions from textual data about specific entities and their corresponding aspects through various complementary subtasks. Several prior research has focused on developing ad hoc designs of varying complexities for t…

  • HOME
  • Publications
  • T50: T-PAIR: Temporal Node-pair Embedding for Automatic Biomedical Hypothesis Generation (Extended abstract)

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.