Authors

* External authors

Venue

Date

Share

Temporal Positive-unlabeled Learning for Biomedical Hypothesis Generation via Risk Estimation

Uchenna Akujuobi

Jun Chen*

Mohamed Elhoseiny*

Michael Spranger

Xiangliang Zhang*

* External authors

NeurIPS-2020

2020

Abstract

Understanding the relationships between biomedical terms like viruses, drugs, and symptoms is essential in the fight against diseases. Many attempts have been made to introduce the use of machine learning to the scientific process of hypothesis generation (HG), which refers to the discovery of meaningful implicit connections between biomedical terms. However, most existing methods fail to truly capture the temporal dynamics of scientific term relations and also assume unobserved connections to be irrelevant (i.e., in a positive-negative (PN) learning setting). To break these limits, we formulate this HG problem as future connectivity prediction task on a dynamic attributed graph via positive-unlabeled (PU) learning. Then, the key is to capture the temporal evolution of node pair (term pair) relations from just the positive and unlabeled data. We propose a variational inference model to estimate the positive prior, and incorporate it in the learning of node pair embeddings, which are then used for link prediction. Experiment results on real-world biomedical term relationship datasets and case study analyses on a COVID-19 dataset validate the effectiveness of the proposed model.

Related Publications

Literature-based Hypothesis Generation: Predicting the evolution of scientific literature to support scientists

AI4X, 2025
Tarek R Besold, Uchenna Akujuobi, Samy Badreddine, Jihun Choi, Hatem ElShazly, Frederick Gifford, Chrysa Iliopoulou, Kana Maruyama, Kae Nagano, Pablo Sanchez Martin, Thiviyan Thanapalasingam, Alessandra Toniato, Christoph Wehner

Science is advancing at an increasingly quick pace, as evidenced, for instance, by the exponential growth in the number of published research articles per year [1]. On the one hand, this poses anincreasingly pressing challenge: Effectively navigating this ever-growing body o…

Gastro-Health Project: Revolutionizing Personalized Nutrition and Health Forecasting Through Integrated AI Technologies

AI4X, 2025
Uchenna Akujuobi, Jiu Yi, Maria Enrique Chung, Tarek Besold

Knowledge graphs are powerful tools for modelling complex, multi-relational data and supporting hypothesis generation, particularly in applications like drug repurposing. However, for predictive methods to gain acceptance as credible scientific tools, they must ensure not on…

Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget

CVPR, 2025
Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, Lingjuan Lyu

As scaling laws in generative AI push performance, they simultaneously concentrate the development of these models among actors with large computational resources. With a focus on text-to-image (T2I) generative models, we aim to unlock this bottleneck by demonstrating very l…

  • HOME
  • Publications
  • Temporal Positive-unlabeled Learning for Biomedical Hypothesis Generation via Risk Estimation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.