Authors

* External authors

Venue

Date

Share

Towards a fuller understanding of neurons with Clustered Compositional Explanations

Biagio La Rosa*

Leilani H. Gilpin*

Roberto Capobianco

* External authors

NeurIPS 2023

2023

Abstract

Compositional Explanations is a method for identifying logical formulas of concepts that approximate the neurons' behavior. However, these explanations are linked to the small spectrum of neuron activations used to check the alignment (i.e., the highest ones), thus lacking completeness. In this paper, we propose a generalization, called Clustered Compositional Explanations, that combines Compositional Explanations with clustering and a novel search heuristic to approximate a broader spectrum of the neuron behavior. We define, and address the problems connected to the application of these methods to multiple ranges of activations, analyze the insights retrievable by using our algorithm, and propose some desiderata qualities that can be used to study the explanations returned by different algorithms.

Related Publications

DeepDFA: Automata Learning through Neural Probabilistic Relaxations

ECAI, 2025
Elena Umili*, Roberto Capobianco

In this work, we introduce DeepDFA, a novel approach to identifying Deterministic Finite Automata (DFAs) from traces, harnessing a differentiable yet discrete model. Inspired by both the probabilistic relaxation of DFAs and Recurrent Neural Networks (RNNs), our model offers …

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

ACC, 2024
Catherine Weaver*, Roberto Capobianco, Peter R. Wurman, Peter Stone, Masayoshi Tomizuka*

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equ…

Memory Replay For Continual Learning With Spiking Neural Networks

IEEE MSLP, 2023
Michela Proietti*, Alessio Ragno*, Roberto Capobianco

Two of the most impressive features of biological neural networks are their high energy efficiency and their ability to continuously adapt to varying inputs. On the contrary, the amount of power required to train top-performing deep learning models rises as they become more …

  • HOME
  • Publications
  • Towards a fuller understanding of neurons with Clustered Compositional Explanations

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.