What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?
Songyang Han
Sanbao Su*
Sihong He*
Shuo Han*
Haizhao Yang*
Shaofeng Zou*
Fei Miao*
* External authors
TMLR 2024
2024
Abstract
Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate different solution concepts of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies.
Related Publications
Object detection and multiple object tracking (MOT) are essential components of self-driving systems. Accurate detection and uncertainty quantification are both critical for onboard modules, such as perception, prediction, and planning, to improve the safety and robustness o…
The recent advancements in wireless technology enable connected autonomous vehicles (CAVs) to gather information about their environment by vehicle-to-vehicle (V2V) communication. In this work, we design an information-sharing-based multi-agent reinforcement learning (MARL) …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.