Venue
- Journal of Machine Learning Research
Date
- 2022
d3rlpy: An Offline Deep Reinforcement Learning Library
Michita Imai*
* External authors
Journal of Machine Learning Research
2022
Abstract
In this paper, we introduce d3rlpy, an open-sourced offline deep reinforcement learning (RL) library for Python. d3rlpy supports a set of offline deep RL algorithms as well as off-policy online algorithms via a fully documented plug-and-play API. To address a reproducibility issue, we conduct a large-scale benchmark with D4RL and Atari 2600 dataset to ensure implementation quality and provide experimental scripts and full tables of results. The d3rlpy source code can be found on GitHub: https://github.com/takuseno/d3rlpy.
Related Publications
Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…
In model-based reinforcement learning (MBRL), policy gradients can be estimated either by derivative-free RL methods, such as likelihood ratio gradients (LR), or by backpropagating through a differentiable model via reparameterization gradients (RP). Instead of using one or …
While existing automatic differentiation (AD) frameworks allow flexibly composing model architectures, they do not provide the same flexibility for composing learning algorithms---everything has to be implemented in terms of back propagation. To address this gap, we invent A…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.