d3rlpy: An Offline Deep Reinforcement Learning Library
Takuma Seno
Michita Imai*
* External authors
Journal of Machine Learning Research
2022
Abstract
In this paper, we introduce d3rlpy, an open-sourced offline deep reinforcement learning (RL) library for Python. d3rlpy supports a set of offline deep RL algorithms as well as off-policy online algorithms via a fully documented plug-and-play API. To address a reproducibility issue, we conduct a large-scale benchmark with D4RL and Atari 2600 dataset to ensure implementation quality and provide experimental scripts and full tables of results. The d3rlpy source code can be found on GitHub: https://github.com/takuseno/d3rlpy.
Related Publications
When designing reinforcement learning (RL) agents, a designer communicates the desired agent behavior through the definition of reward functions - numerical feedback given to the agent as reward or punishment for its actions. However, mapping desired behaviors to reward func…
Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…
Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



