Weiming
Zhuang

Profile

Weiming is a research scientist in Privacy-Preserving Machine Learning (PPML) at Sony AI. His research interests and expertise span federated learning, AI privacy and security, computer vision, and machine learning systems. Before joining Sony AI, Weiming was a Ph.D. researcher under SenseTime-NTU Talent Programme and received his Ph.D. from Nanyang Technological University. He spent two years in software engineering building large-scale distributed systems and completed his Bachelor's from the National University of Singapore, School of Computing. Weiming has published papers in top-tier conferences and journals, including ICLR, ICCV, etc., and his papers have been selected as oral presentations at top conferences.

Message

My role at Sony AI is to empower Sony with privacy-preserving and robust AI solutions and to contribute to the global discourse with cutting-edge AI research.

Publications

Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning

NeurIPS, 2023
Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, Guodong Long*

Federated learning (FL) is an effective machine learning paradigm where multiple clients can train models based on heterogeneous data in a decentralized manner without accessing their private data. However, existing FL systems undergo performance deterioration due to feature…

MAS: Towards Resource-Efficient Federated Multiple-Task Learning

ICCV, 2023
Weiming Zhuang, Yonggang Wen*, Shuai Zhang*, Lingjuan Lyu

Federated learning (FL) is an emerging distributed machine learning method that empowers in-situ model training on decentralized edge devices. However, multiple simultaneous FL tasks could overload resource-constrained devices. In this work, we propose the first FL system to…

TARGET: Federated Class-Continual Learning via Exemplar-Free Distillation

ICCV, 2023
Jie Zhang, Chen Chen, Weiming Zhuang, Lingjuan Lyu

This paper focuses on an under-explored yet important problem: Federated Class-Continual Learning (FCCL), where new classes are dynamically added in federated learning. Existing FCCL works suffer from various limitations, such as requiring additional datasets or storing the …

Blog

December 13, 2023

Sony AI Reveals New Research Contributions at NeurIPS 2023

Sony Group Corporation and Sony AI have been active participants in the annual NeurIPS Conference for years, contributing pivotal research that has helped to propel the fields of artificial intelligence and machine learning forwar…

Sony Group Corporation and Sony AI have been active participants in the annual NeurIPS Conference for years, contributing pivotal …

October 6, 2023 | PPML

Advancements in Federating Learning Highlighted in Papers Presented at ICCV 2023

As the field of machine learning continues to evolve, Sony AI researchers are constantly exploring innovative solutions to address the pressing issues faced by the industry. Two research papers, both accepted at the premier intern…

As the field of machine learning continues to evolve, Sony AI researchers are constantly exploring innovative solutions to address…

July 13, 2023 | Sony AI

Meet the Team #8: Weiming Zhuang, Nidham Gazagnadou, Chen Chen

At Sony AI, the Privacy-Preserving Machine Learning (PPML) team focuses on fundamental and applied research in computer vision privacy. Their innovative research aims to apply these novel ideas to real-world AI applications. In th…

At Sony AI, the Privacy-Preserving Machine Learning (PPML) team focuses on fundamental and applied research in computer vision pri…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.