Authors

* External authors

Venue

Date

Share

Data Poisoning Attacks on Federated Machine Learning

Gan Sun*

Yang Cong*

Jiahua Dong*

Qiang Wang*

Lingjuan Lyu

Ji Liu*

* External authors

IEEE Internet of Things Journal

2021

Abstract

Federated machine learning which enables resource-constrained node devices (e.g., Internet of Things (IoT) devices, smartphones) to establish a knowledge-shared model while keeping the raw data local, could provide privacy preservation and economic benefit by designing an effective communication protocol. However, this communication protocol can be adopted by attackers to launch data poisoning attacks for different nodes, which has been shown as a big threat to most machine learning models. Therefore, we in this paper intend to study the model vulnerability of federated machine learning, and even on IoT systems. To be specific, we here attempt to attacking a popular federated multi-task learning framework, which uses a general multi-task learning framework to handle statistical challenges in federated learning setting. The problem of calculating optimal poisoning attacks on federated multi-task learning is formulated as a bilevel program, which is adaptive to arbitrary selection of target nodes and source attacking nodes. We then propose a novel systems-aware optimization method, called as ATTack on Federated Learning (ATFL), to efficiently derive the implicit gradients for poisoned data, and further attain optimal attack strategies in the federated machine learning. This is an earlier work, to our knowledge, that explores attacking federated machine learning via data poisoning. Finally, experiments on several real-world datasets demonstrate that when the attackers directly poison the target nodes or indirectly poison the related nodes via using the communication protocol, federated multi-task learning model is sensitive to both poisoning attacks.

Related Publications

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

NeurIPS, 2024
Jiaqi Wang*, Lingjuan Lyu, Fenglong Ma*, Qi Li

Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …

CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence

NeurIPS, 2024
Chaochao Chen*, Yizhao Zhang*, Lingjuan Lyu, Yuyuan Li*, Jiaming Zhang, Li Zhang, Biao Gong, Chenggang Yan

With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.