Authors

* External authors

Venue

Date

Share

Data Poisoning Attacks on Federated Machine Learning

Gan Sun*

Yang Cong*

Jiahua Dong*

Qiang Wang*

Lingjuan Lyu

Ji Liu*

* External authors

IEEE Internet of Things Journal

2021

Abstract

Federated machine learning which enables resource-constrained node devices (e.g., Internet of Things (IoT) devices, smartphones) to establish a knowledge-shared model while keeping the raw data local, could provide privacy preservation and economic benefit by designing an effective communication protocol. However, this communication protocol can be adopted by attackers to launch data poisoning attacks for different nodes, which has been shown as a big threat to most machine learning models. Therefore, we in this paper intend to study the model vulnerability of federated machine learning, and even on IoT systems. To be specific, we here attempt to attacking a popular federated multi-task learning framework, which uses a general multi-task learning framework to handle statistical challenges in federated learning setting. The problem of calculating optimal poisoning attacks on federated multi-task learning is formulated as a bilevel program, which is adaptive to arbitrary selection of target nodes and source attacking nodes. We then propose a novel systems-aware optimization method, called as ATTack on Federated Learning (ATFL), to efficiently derive the implicit gradients for poisoned data, and further attain optimal attack strategies in the federated machine learning. This is an earlier work, to our knowledge, that explores attacking federated machine learning via data poisoning. Finally, experiments on several real-world datasets demonstrate that when the attackers directly poison the target nodes or indirectly poison the related nodes via using the communication protocol, federated multi-task learning model is sensitive to both poisoning attacks.

Related Publications

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

COALA: A Practical and Vision-Centric Federated Learning Platform

ICML, 2024
Weiming Zhuang, Jian Xu, Chen Chen, Jingtao Li, Lingjuan Lyu

We present COALA, a vision-centric Federated Learning (FL) platform, and a suite of benchmarks for practical FL scenarios, which we categorize as task, data, and model levels. At the task level, COALA extends support from simple classification to 15 computer vision tasks, in…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.