Authors

* External authors

Venue

Date

Share

Joint Stance and Rumor Detection in Hierarchical Heterogeneous Graph

Chen li*

Hao Peng*

Jianxin Li*

Lichao Sun*

Lingjuan Lyu

Lihong Wang*

Philip Yu*

Lifang He*

* External authors

IEEE Transactions on Neural Networks and Learning Systems

2021

Abstract

Recently, large volumes of false or unverified information (e.g., fake news and rumors) appear frequently in emerging social media, which are often discussed on a large scale and widely disseminated, causing bad consequences. Many studies on rumor detection indicate that the stance distribution of posts is closely related to the rumor veracity. However, these two tasks are generally considered separately or just using a shared encoder/layer via multitask learning, without exploring the more profound correlation between them. In particular, the performance of existing methods relies heavily on the quality of hand-crafted features and the quantity of labeled data, which is not conducive to early rumor detection and few-shot detection. In this article, we construct a hierarchical heterogeneous graph by associating posts containing the same high-frequency words to facilitate the feature cross-topic propagation and jointly formulate stance and rumor detection as multistage classification tasks. To realize the updating of node embeddings jointly driven by stance and rumor detection, we propose a multigraph neural network framework, which can more flexibly capture the attribute and structure information of the context. Experiments on real datasets collected from Twitter and Reddit show that our method outperforms state-of-the-art by a large margin on both stance and rumor detection. And the experimental results also show that our method has better interpretability and requires less labeled data.

Related Publications

How to Evaluate and Mitigate IP Infringement in Visual Generative AI?

ICML, 2025
Zhenting Wang, Chen Chen, Vikash Sehwag, Minzhou Pan*, Lingjuan Lyu

The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…

Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models

CVPR, 2025
Jie Ren, Kangrui Chen, Yingqian Cui, Shenglai Zeng, Hui Liu, Yue Xing, Jiliang Tang, Lingjuan Lyu

Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…

CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI

CVPR, 2025
Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, Vikash Sehwag

With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…

  • HOME
  • Publications
  • Joint Stance and Rumor Detection in Hierarchical Heterogeneous Graph

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.