Authors

Venue

Date

Share

A Champion-level Vision-based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

Hojoon Lee

Takuma Seno

Jun Jet Tai

Kaushik Subramanian

Kenta Kawamoto

Peter Stone

Peter R. Wurman

RA-L

2025

Abstract

Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting real-world applicability. To address this limitation, we introduce a vision-based autonomous racing agent that relies solely on ego-centric camera views and onboard sensor data, eliminating the need for precise localization during inference. This agent employs an asymmetric actor-critic framework: the actor uses a recurrent neural network with the sensor data local to the car to retain track layouts and opponent positions, while the critic accesses the global features during training. Evaluated in GT7, our agent consistently outperforms GT7's built-drivers. To our knowledge, this work presents the first vision-based autonomous racing agent to demonstrate champion-level performance in competitive racing scenarios.

Related Publications

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

RLC, 2025
Michela Proietti*, Peter R. Wurman, Peter Stone, Roberto Capobianco

The purpose of continual reinforcement learning is to train an agent on a sequence of tasks such that it learns the ones that appear later in the sequence while retaining theability to perform the tasks that appeared earlier. Experience replay is a popular method used to mak…

Automated Reward Design for Gran Turismo

NeurIPS, 2025
Michel Ma, Takuma Seno, Kaushik Subramanian, Peter R. Wurman, Peter Stone, Craig Sherstan

When designing reinforcement learning (RL) agents, a designer communicates the desired agent behavior through the definition of reward functions - numerical feedback given to the agent as reward or punishment for its actions. However, mapping desired behaviors to reward func…

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

  • HOME
  • Publications
  • A Champion-level Vision-based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.