Authors
- Yigitcan Özer
- Woosung Choi
- Joan Serrà
- Mayank Kumar Singh*
- Wei-Hsiang Liao
- Yuki Mitsufuji
* External authors
Venue
- INTERSPEECH-25
Date
- 2025
A Comprehensive Real-World Assessment of Audio Watermarking Algorithms: Will They Survive Neural Codecs?
Yigitcan Özer
Woosung Choi
Mayank Kumar Singh*
* External authors
INTERSPEECH-25
2025
Abstract
We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with various distortions such as compression, background noise, and reverberation, along with a diverse test dataset including speech, environmental sounds, and music recordings. Evaluating four existing watermarking methods on RAW-bench reveals two main insights: (i) neural compression techniques pose the most significant challenge, even when algorithms are trained with such compressions; and (ii) training with audio attacks generally improves robustness, although it is insufficient in some cases. Furthermore, we find that specific distortions, such as polarity inversion, time stretching, or reverb, seriously affect certain methods. The evaluation framework is accessible at this http URL.
Related Publications
We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditiona…
Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing…
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



