Authors

* External authors

Date

Share

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Megan M. Baker*

Alexander New*

Mario Aguilar-Simon*

Ziad Al-Halah*

Sébastien M. R. Arnold*

Ese Ben-Iwhiwhu*

Andrew P. Brna*

Ethan Brooks*

Ryan C. Brown*

Zachary Daniels*

Anurag Daram*

Fabien Delattre*

Ryan Dellana*

Eric Eaton*

Haotian Fu*

Kristen Grauman*

Jesse Hostetler*

Shariq Iqbal*

Cassandra Kent*

Nicholas Ketz*

Soheil Kolouri*

George Konidaris*

Dhireesha Kudithipudi*

Seungwon Lee*

Michael L. Littman*

Sandeep Madireddy*

Jorge A. Mendez*

Eric Q. Nguyen*

Christine D. Piatko*

Praveen K. Pilly*

Aswin Raghavan*

Abrar Rahman*

Santhosh Kumar Ramakrishnan*

Neale Ratzlaff*

Andrea Soltoggio*

Peter Stone

Indranil Sur*

Zhipeng Tang*

Saket Tiwari*

Kyle Vedder*

Felix Wang*

Zifan Xu*

Angel Yanguas-Gil*

Harel Yedidsion*

Shangqun Yu*

Gautam K. Vallabha*

* External authors

2023

Abstract

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of “Lifelong Learning” systems that are capable of (1) Continuous Learning, (2) Transfer and Adaptation, and (3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development — both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.