* External authors




A Federated Graph Neural Network Framework for Privacy-Preserving Personalization

Yongfeng Huang*

Chuhan Wu*

Fangzhao Wu*

Lingjuan Lyu

Tao Qi*

Xing Xie*

* External authors

Nature Communications



Graph neural network (GNN) is effective in modeling high-order interactions and has been widely used in various personalized applications such as recommendation. However, mainstream personalization methods rely on centralized GNN learning on global graphs, which have considerable privacy risks due to the privacy-sensitive nature of user data. Here, we present a federated GNN framework named FedGNN for both effective and privacy-preserving personalization. Through a privacy-preserving model update method, we can collaboratively train GNN models based on decentralized graphs inferred from local data. To further exploit graph information beyond local interactions, we introduce a privacy-preserving graph expansion protocol to incorporate high-order information under privacy protection. Experimental results on six datasets for personalization in different scenarios show that FedGNN achieves 4.0%∼9.6% lower errors than the state-of-the-art federated personalization methods under good privacy protection. FedGNN provides a novel direction to mining decentralized graph data in a privacy-preserving manner for responsible and intelligent personalization.

Related Publications

MocoSFL: enabling cross-client collaborative self-supervised learning

ICLR, 2023
Jingtao Li, Lingjuan Lyu, Daisuke Iso, Chaitali Chakrabarti*, Michael Spranger

Existing collaborative self-supervised learning (SSL) schemes are not suitable for cross-client applications because of their expensive computation and large local data requirements. To address these issues, we propose MocoSFL, a collaborative SSL framework based on Split Fe…

IDEAL: Query-Efficient Data-Free Learning from Black-Box Models

ICLR, 2023
Jie Zhang, Chen Chen, Lingjuan Lyu

Knowledge Distillation (KD) is a typical method for training a lightweight student model with the help of a well-trained teacher model. However, most KD methods require access to either the teacher's training data or model parameter, which is unrealistic. To tackle this prob…

Twofer: Tackling Continual Domain Shift with Simultaneous Domain Generalization and Adaptation

ICLR, 2023
Chenxi Liu*, Lixu Wang, Lingjuan Lyu, Chen Sun*, Xiao Wang*, Qi Zhu*

In real-world applications, deep learning models often run in non-stationary environments where the target data distribution continually shifts over time. There have been numerous domain adaptation (DA) methods in both online and offline modes to improve cross-domain adaptat…

  • HOME
  • Publications
  • A Federated Graph Neural Network Framework for Privacy-Preserving Personalization


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.