Authors

* External authors

Venue

Date

Share

GEAR: A Margin-based Federated Adversarial Training Approach

Chen Chen

Jie Zhang*

Lingjuan Lyu

* External authors

FL-AAAI-22

2022

Abstract

Previous studies have shown that federated learning (FL) is vulnerable to well-crafted adversarial examples. Some recent efforts tried to combine adversarial training with FL, i.e., federated adversarial training (FAT), in order to achieve adversarial robustness in FL. However, most of the existing FAT works suffer from either low natural accuracy or low robust accuracy. Moreover, none of these works provide a more in-depth understanding of the challenges behind adversarial robustness in FL. To address these issues, we propose a novel marGin-based fEderated Adversarial tRaining Approach called GEAR. It encourages the minority classes to have larger margins by introducing a margin-based cross-entropy loss, and regularizes the decision boundary to be smooth by introducing a regularization loss, thus providing a better decision boundary for the global model. To the best of our knowledge, this work is the first to investigate the impact of decision boundary on FAT and delivers the best natural accuracy and robust accuracy in FL by far. Extensive experiments on multiple datasets across various settings all validate the effectiveness of our proposed method. For example, on SVHN dataset, GEAR can improve the natural accuracy and robust accuracy (against FGSM attack) of the best baseline method (FedTRADES) by 20.17\% and 10.73\%, respectively.

Related Publications

A Simple Background Augmentation Method for Object Detection with Diffusion Model

ECCV, 2024
Yuhang Li, Xin Dong, Chen Chen, Weiming Zhuang, Lingjuan Lyu

In computer vision, it is well-known that a lack of data diversity will impair model performance. In this study, we address the challenges of enhancing the dataset diversity problem in order to benefit various downstream tasks such as object detection and instance segmentati…

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

  • HOME
  • Publications
  • GEAR: A Margin-based Federated Adversarial Training Approach

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.