Authors

* External authors

Venue

Date

Share

A Novel Control Law for Multi-joint Human-Robot Interaction Tasks While Maintaining Postural Coordination

Keya Ghonasgi*

Reuth Mirsky*

Adrian M Haith*

Peter Stone

Ashish D Deshpande*

* External authors

IROS 2023

2023

Abstract

Exoskeleton robots are capable of safe torque-controlled interactions with a wearer while moving their limbs through pre-defined trajectories. However, affecting and assisting the wearer's movements while incorporating their inputs (effort and movements) effectively during an interaction remains an open problem due to the complex and variable nature of human motion. In this paper, we present a control algorithm that leverages task-specific movement behaviors to control robot torques during unstructured interactions by implementing a force field that imposes a desired joint angle coordination behavior. This control law, built by using principal component analysis (PCA), is implemented and tested with the Harmony exoskeleton. We show that the proposed control law is versatile enough to allow for the imposition of different coordination behaviors with varying levels of impedance stiffness. We also test the feasibility of our method for unstructured human-robot interaction. Specifically, we demonstrate that participants in a human-subject experiment are able to effectively perform reaching tasks while the exoskeleton imposes the desired joint coordination under different movement speeds and interaction modes. Survey results further suggest that the proposed control law may offer a reduction in cognitive or motor effort. This control law opens up the possibility of using the exoskeleton for training the participating in accomplishing complex multi-joint motor tasks while maintaining postural coordination.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • A Novel Control Law for Multi-joint Human-Robot Interaction Tasks While Maintaining Postural Coordination

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.