Venue
- NeurIPS 2022
Date
- 2022
A View From Somewhere: Human-Centric Face Representations
Jerone T. A. Andrews
Przemyslaw Joniak*
* External authors
NeurIPS 2022
2022
Abstract
We propose to implicitly learn a set of continuous face-varying dimensions, without ever asking an annotator to explicitly categorize a person. We uncover the dimensions by learning on a novel dataset of 638,180 human judgments of face similarity (FAX). We demonstrate the utility of our learned embedding space for predicting face similarity judgments, collecting continuous face attribute values, and attribute classification. Moreover, using a novel conditional framework, we show that an annotator's demographics influences the importance they place on different attributes when judging similarity, underscoring the need for diverse annotator groups to avoid biases.
Related Publications
We propose a generative agent that augments training datasets with synthetic datafor model fine-tuning. Unlike prior work, which uniformly samples synthetic data,our agent iteratively generates relevant samples on-the-fly, aligning with the targetdistribution. It prioritizes…
AI technologies have become ubiquitous, influencing domains from healthcare to finance and permeating our daily lives. Concerns about the values underlying the creation and use of datasets to develop AI technologies are growing. Current dataset practices often disregard crit…
Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



