Venue
- NeurIPS 2022
Date
- 2022
A View From Somewhere: Human-Centric Face Representations
Przemyslaw Joniak*
* External authors
NeurIPS 2022
2022
Abstract
We propose to implicitly learn a set of continuous face-varying dimensions, without ever asking an annotator to explicitly categorize a person. We uncover the dimensions by learning on a novel dataset of 638,180 human judgments of face similarity (FAX). We demonstrate the utility of our learned embedding space for predicting face similarity judgments, collecting continuous face attribute values, and attribute classification. Moreover, using a novel conditional framework, we show that an annotator's demographics influences the importance they place on different attributes when judging similarity, underscoring the need for diverse annotator groups to avoid biases.
Related Publications
Speech AI Technologies are largely trained on publicly available datasets or by the massive web-crawling of speech. In both cases, data acquisition focuses on minimizing collection effort, without necessarily taking the data subjects’ protection or user needs into considerat…
Recent interests in causality for fair decision-making systems has been accompanied with great skepticism due to practical and epistemological challenges with applying existing causal fairness approaches. Existing works mainly seek to remove the causal effect of social categ…
As computer vision systems become more widely deployed, there is increasing concern from both the research community and the public that these systems are not only reproducing but amplifying harmful social biases. The phenomenon of bias amplification, which is the focus of t…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.