Authors

* External authors

Venue

Date

Share

Accelerated Federated Learning with Decoupled Adaptive Optimization

Jiayin Jin*

Jiaxiang Ren*

Yang Zhou*

Lingjuan Lyu

Ji Liu*

Dejing Dou*

* External authors

ICML 2022

2022

Abstract

The federated learning (FL) framework enables edge clients to collaboratively learn a shared inference model while keeping privacy of training data on clients. Recently, many heuristics efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings for improving convergence and accuracy. However, there is still a paucity of theoretical principles on where to and how to design and utilize adaptive optimization methods in federated settings. This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs). First, an analytic framework is established to build a connection between federated optimization methods and decompositions of ODEs of corresponding centralized optimizers. Second, based on this analytic framework, a momentum decoupling adaptive optimization method, FedDA, is developed to fully utilize the global momentum on each local iteration and accelerate the training convergence. Last but not least, full batch gradients are utilized to mimic centralized optimization in the end of the training process to ensure the convergence and overcome the possible inconsistency caused by adaptive optimization methods.

Related Publications

Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?

NeurIPS, 2023
Xiaoxiao Sun*, Nidham Gazagnadou, Vivek Sharma, Lingjuan Lyu, Hongdong Li*, Liang Zheng*

Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Image…

UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition

NeurIPS, 2023
Yuyuan Li*, Chaochao Chen*, Yizhao Zhang*, Weiming Liu*, Lingjuan Lyu, Xiaolin Zheng*, Dan Meng*, Jun Wang*

With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearn…

Towards Personalized Federated Learning via Heterogeneous Model Reassembly

NeurIPS, 2023
Jiaqi Wang*, Xingyi Yang*, Suhan Cui*, Liwei Che*, Lingjuan Lyu, Dongkuan Xu*, Fenglong Ma*

This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneo…

  • HOME
  • Publications
  • Accelerated Federated Learning with Decoupled Adaptive Optimization

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.