Authors
- Siddharth Desai*
- Ishan Durugkar
- Haresh Karnan*
- Garrett Warnell*
- Josiah Hanna*
- Peter Stone
* External authors
Venue
- NeurIPS-2020
Date
- 2020
An Imitation from Observation Approach to Transfer Learning with Dynamics Mismatch
Siddharth Desai*
Ishan Durugkar
Haresh Karnan*
Garrett Warnell*
Josiah Hanna*
* External authors
NeurIPS-2020
2020
Abstract
We examine the problem of transferring a policy learned in a source environment to a target environment with different dynamics, particularly in the case where it is critical to reduce the amount of interaction with the target environment during learning. This problem is particularly important in sim-to-real transfer because simulators inevitably model real-world dynamics imperfectly. In this paper, we show that one existing solution to this transfer problem-- grounded action transformation --is closely related to the problem of imitation from observation (IfO): learning behaviors that mimic the observations of behavior demonstrations. After establishing this relationship, we hypothesize that recent state-of-the-art approaches from the IfO literature can be effectively repurposed for grounded transfer learning. To validate our hypothesis we derive a new algorithm -- generative adversarial reinforced action transformation (GARAT) -- based on adversarial imitation from observation techniques. We run experiments in several domains with mismatched dynamics, and find that agents trained with GARAT achieve higher returns in the target environment compared to existing black-box transfer methods.
Related Publications
Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…
Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…
Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.