Authors

* External authors

Venue

Date

Share

Augmented data sheets for speech datasets and ethical decision-making

Orestis Papakyriakopoulos*

Anna Seo Gyeong Choi*

William Thong

Dora Zhao*

Jerone Andrews

Rebecca Bourke

Alice Xiang

Allison Koenecke*

* External authors

FAccT 2023

2023

Abstract


Human-centric image datasets are critical to the development of computer vision technologies. However, recent investigations have foregrounded significant ethical issues related to privacy and bias, which have resulted in the complete retraction, or modification, of several prominent datasets. Recent works have tried to reverse this trend, for example, by proposing analytical frameworks for ethically evaluating datasets, the standardization of dataset documentation and curation practices, privacy preservation methodologies, as well as tools for surfacing and mitigating representational biases. Little attention, however, has been paid to the realities of operationalizing ethical data collection. To fill this gap, we present a set of key ethical considerations and practical recommendations for collecting more ethically-minded human-centric image data. Our research directly addresses issues of privacy and bias by contributing to the research community best practices for ethical data collection, covering purpose, privacy and consent, as well as diversity. We motivate each consideration by drawing on lessons from current practices, dataset withdrawals and audits, and analytical ethical frameworks. Our research is intended to augment recent scholarship, representing an important step toward more responsible data curation practices.

Related Publications

Responsibly Training Foundation Models: Actualizing Ethical Principles for Curating Large-Scale Training Datasets in the Era …

ACM SIGCHI, 2025
Morgan Klaus Scheuerman, Dora Zhao*, Jerone T. A. Andrews, Abeba Birhane, Q. Vera Liao*, Georgia Panagiotidou*, Pooja Chitre*, Kathleen Pine, Shawn Walker*, Jieyu Zhao*, Alice Xiang

AI technologies have become ubiquitous, influencing domains from healthcare to finance and permeating our daily lives. Concerns about the values underlying the creation and use of datasets to develop AI technologies are growing. Current dataset practices often disregard crit…

A Taxonomy of Challenges to Curating Fair Datasets

NeurIPS, 2024
Dora Zhao*, Morgan Klaus Scheuerman, Pooja Chitre*, Jerone Andrews, Georgia Panagiotidou*, Shawn Walker*, Kathleen H. Pine*, Alice Xiang

Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade…

Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspectiv…

EMNLP, 2024
Zhaotian Weng*, Zijun Gao*, Jerone Andrews, Jieyu Zhao*

Vision-language models (VLMs) pre-trained on extensive datasets can inadvertently learn biases by correlating gender information with specific objects or scenarios. Current methods, which focus on modifying inputs and monitoring changes in the model's output probability scor…

  • HOME
  • Publications
  • Augmented data sheets for speech datasets and ethical decision-making

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.