Authors

* External authors

Venue

Date

Share

Automatic Piano Transcription with Hierarchical Frequency-Time Transformer

Keisuke Toyama*

Taketo Akama*

Yukara Ikemiya

Yuhta Takida

Wei-Hsiang Liao

Yuki Mitsufuji

* External authors

ISMIR 2023

2023

Abstract

Taking long-term spectral and temporal dependencies into account is essential for automatic piano transcription. This is especially helpful when determining the precise onset and offset for each note in the polyphonic piano content. In this case, we may rely on the capability of self-attention mechanism in Transformers to capture these long-term dependencies in the frequency and time axes. In this work, we propose hFT-Transformer, which is an automatic music transcription method that uses a two-level hierarchical frequency-time Transformer architecture. The first hierarchy includes a convolutional block in the time axis, a Transformer encoder in the frequency axis, and a Transformer decoder that converts the dimension in the frequency axis. The output is then fed into the second hierarchy which consists of another Transformer encoder in the time axis. We evaluated our method with the widely used MAPS and MAESTRO v3.0.0 datasets, and it demonstrated state-of-the-art performance on all the F1-scores of the metrics among Frame, Note, Note with Offset, and Note with Offset and Velocity estimations.

Related Publications

Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

ICLR, 2025
Toshimitsu Uesaka, Taiji Suzuki, Yuhta Takida, Chieh-Hsin Lai, Naoki Murata, Yuki Mitsufuji

In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in…

Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

ICLR, 2025
Shang-Fu Chen, Chieh-Hsin Lai, Dongjun Kim*, Naoki Murata, Takashi Shibuya, Wei-Hsiang Liao, Shao-Hua Sun, Yuki Mitsufuji, Ayano Hiranaka

Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward model…

Mining your own secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

ICLR, 2025
Saurav Jha, Shiqi Yang*, Masato Ishii, Mengjie Zhao*, Christian Simon, Muhammad Jehanzeb Mirza, Dong Gong, Lina Yao, Shusuke Takahashi*, Yuki Mitsufuji

Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a ti…

  • HOME
  • Publications
  • Automatic Piano Transcription with Hierarchical Frequency-Time Transformer

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.