Venue
- IJCAI-2020
Date
- 2021
Balancing Individual Preferences and Shared Objectives in Multiagent Reinforcement Learning
Ishan Durugkar
Elad Liebman*
* External authors
IJCAI-2020
2021
Abstract
In multiagent reinforcement learning scenarios, it is often the case that independent agents must jointly learn to perform a cooperative task. This paper focuses on such a scenario in which agents have individual preferences regarding how to accomplish the shared task. We consider a framework for this setting which balances individual preferences against task rewards using a linear mixing scheme. In our theoretical analysis we establish that agents can reach an equilibrium that leads to optimal shared task reward even when they consider individual preferences which are not fully aligned with this task. We then empirically show, somewhat counter-intuitively, that there exist mixing schemes that outperform a purely task-oriented baseline. We further consider empirically how to optimize the mixing scheme.
Related Publications
Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…
This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…
A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.