Authors

* External authors

Venue

Date

Share

Balancing Individual Preferences and Shared Objectives in Multiagent Reinforcement Learning

Ishan Durugkar

Elad Liebman*

Peter Stone

* External authors

IJCAI-2020

2021

Abstract

In multiagent reinforcement learning scenarios, it is often the case that independent agents must jointly learn to perform a cooperative task. This paper focuses on such a scenario in which agents have individual preferences regarding how to accomplish the shared task. We consider a framework for this setting which balances individual preferences against task rewards using a linear mixing scheme. In our theoretical analysis we establish that agents can reach an equilibrium that leads to optimal shared task reward even when they consider individual preferences which are not fully aligned with this task. We then empirically show, somewhat counter-intuitively, that there exist mixing schemes that outperform a purely task-oriented baseline. We further consider empirically how to optimize the mixing scheme.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • Balancing Individual Preferences and Shared Objectives in Multiagent Reinforcement Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.