Authors

* External authors

Venue

Date

Share

Balancing Individual Preferences and Shared Objectives in Multiagent Reinforcement Learning

Ishan Durugkar*

Elad Liebman*

Peter Stone

* External authors

IJCAI-2020

2021

Abstract

In multiagent reinforcement learning scenarios, it is often the case that independent agents must jointly learn to perform a cooperative task. This paper focuses on such a scenario in which agents have individual preferences regarding how to accomplish the shared task. We consider a framework for this setting which balances individual preferences against task rewards using a linear mixing scheme. In our theoretical analysis we establish that agents can reach an equilibrium that leads to optimal shared task reward even when they consider individual preferences which are not fully aligned with this task. We then empirically show, somewhat counter-intuitively, that there exist mixing schemes that outperform a purely task-oriented baseline. We further consider empirically how to optimize the mixing scheme.

Related Publications

Benchmarking Reinforcement Learning Techniques for Autonomous Navigation

ICRA, 2023
Zifan Xu*, Bo Liu*, Xuesu Xiao*, Anirudh Nair*, Peter Stone

Deep reinforcement learning (RL) has broughtmany successes for autonomous robot navigation. However,there still exists important limitations that prevent real-worlduse of RL-based navigation systems. For example, most learningapproaches lack safety guarantees; and learned na…

Learning Perceptual Hallucination for Multi-Robot Navigation in Narrow Hallways

ICRA, 2023
Jin-Soo Park*, Xuesu Xiao*, Garrett Warnell*, Harel Yedidsion*, Peter Stone

While current systems for autonomous robot navigation can produce safe and efficient motion plans in static environments, they usually generate suboptimal behaviors when multiple robots must navigate together in confined spaces. For example, when two robots meet each other i…

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Neural Networks, 2023
Megan M. Baker*, Alexander New*, Mario Aguilar-Simon*, Ziad Al-Halah*, Sébastien M. R. Arnold*, Ese Ben-Iwhiwhu*, Andrew P. Brna*, Ethan Brooks*, Ryan C. Brown*, Zachary Daniels*, Anurag Daram*, Fabien Delattre*, Ryan Dellana*, Eric Eaton*, Haotian Fu*, Kristen Grauman*, Jesse Hostetler*, Shariq Iqbal*, Cassandra Kent*, Nicholas Ketz*, Soheil Kolouri*, George Konidaris*, Dhireesha Kudithipudi*, Seungwon Lee*, Michael L. Littman*, Sandeep Madireddy*, Jorge A. Mendez*, Eric Q. Nguyen*, Christine D. Piatko*, Praveen K. Pilly*, Aswin Raghavan*, Abrar Rahman*, Santhosh Kumar Ramakrishnan*, Neale Ratzlaff*, Andrea Soltoggio*, Peter Stone, Indranil Sur*, Zhipeng Tang*, Saket Tiwari*, Kyle Vedder*, Felix Wang*, Zifan Xu*, Angel Yanguas-Gil*, Harel Yedidsion*, Shangqun Yu*, Gautam K. Vallabha*

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and syst…

  • HOME
  • Publications
  • Balancing Individual Preferences and Shared Objectives in Multiagent Reinforcement Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.