Authors

* External authors

Venue

Date

Share

Benchmarking Reinforcement Learning Techniques for Autonomous Navigation

Zifan Xu*

Bo Liu*

Xuesu Xiao*

Anirudh Nair*

Peter Stone

* External authors

ICRA 2023

2023

Abstract

Deep reinforcement learning (RL) has broughtmany successes for autonomous robot navigation. However,there still exists important limitations that prevent real-worlduse of RL-based navigation systems. For example, most learningapproaches lack safety guarantees; and learned navigationsystems may not generalize well to unseen environments.Despite a variety of recent learning techniques to tackle thesechallenges in general, a lack of an open-source benchmarkand reproducible learning methods specifically for autonomousnavigation makes it difficult for roboticists to choose whatlearning methods to use for their mobile robots and for learningresearchers to identify current shortcomings of general learningmethods for autonomous navigation. In this paper, we identifyfour major desiderata of applying deep RL approaches forautonomous navigation: (D1) reasoning under uncertainty, (D2)safety, (D3) learning from limited trial-and-error data, and (D4)generalization to diverse and novel environments. Then, weexplore four major classes of learning techniques with thepurpose of achieving one or more of the four desiderata:memory-based neural network architectures (D1), safe RL (D2),model-based RL (D2, D3), and domain randomization (D4). Bydeploying these learning techniques in a new open-source large-scale navigation benchmark and real-world environments, weperform a comprehensive study aimed at establishing to whatextent can these techniques achieve these desiderata for RL-based navigation systems

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • Benchmarking Reinforcement Learning Techniques for Autonomous Navigation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.