Authors

* External authors

Venue

Date

Share

Beyond Model Extraction: Imitation Attack for Black-Box NLP APIs

Qiongkai Xu*

Xuanli He*

Lingjuan Lyu

Lizhen Qu*

Gholamreza Haffari*

* External authors

COLING

2022

Abstract

Machine-learning-as-a-service (MLaaS) has attracted millions of users to their splendid large-scale models. Although published as black-box APIs, the valuable models behind these services are still vulnerable to imitation attacks. Recently, a series of works have demonstrated that attackers manage to steal or extract the victim models. Nonetheless, none of the previous stolen models can outperform the original black-box APIs. In this work, we conduct unsupervised domain adaptation and multi-victim ensemble to showing that attackers could potentially surpass victims, which is beyond previous understanding of model extraction. Extensive experiments on both benchmark datasets and real-world APIs validate that the imitators can succeed in outperforming the original black-box models on transferred domains. We consider our work as a milestone in the research of imitation attack, especially on NLP APIs, as the superior performance could influence the defense or even publishing strategy of API providers.

Related Publications

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

NeurIPS, 2024
Jiaqi Wang*, Lingjuan Lyu, Fenglong Ma*, Qi Li

Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …

CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence

NeurIPS, 2024
Chaochao Chen*, Yizhao Zhang*, Lingjuan Lyu, Yuyuan Li*, Jiaming Zhang, Li Zhang, Biao Gong, Chenggang Yan

With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…

  • HOME
  • Publications
  • Beyond Model Extraction: Imitation Attack for Black-Box NLP APIs

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.