Authors

* External authors

Venue

Date

Share

Beyond Skin Tone: A Multidimensional Measure of Apparent Skin Color

William Thong

Przemyslaw Joniak*

Alice Xiang

* External authors

ICCV 2023

2023

Abstract

This paper strives to measure apparent skin color in computer vision, beyond a unidimensional scale on skin tone. In their seminal paper Gender Shades, Buolamwini and Gebru have shown how gender classification systems can be biased against women with darker skin tones. While the Fitzpatick skin type classification is commonly used to measure skin color, it only focuses on the skin tone ranging from light to dark. Subsequently, fairness researchers and practitioners have adopted the Fitzpatick skin type classification as a common measure to assess skin color bias in computer vision systems. While effective, the Fitzpatick scale only focuses on the skin tone ranging from light to dark. Towards a more comprehensive measure of skin color, we introduce the hue angle ranging from red to yellow. When applied to images, the hue dimension reveals additional biases related to skin color in both computer vision datasets and models. We then recommend multidimensional skin color scales, relying on both skin tone and hue, for fairness assessments.

Related Publications

A Taxonomy of Challenges to Curating Fair Datasets

NeurIPS, 2024
Dora Zhao*, Morgan Klaus Scheuerman, Pooja Chitre*, Jerone Andrews, Georgia Panagiotidou*, Shawn Walker*, Kathleen H. Pine*, Alice Xiang

Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade…

Resampled Datasets Are Not Enough: Mitigating Societal Bias Beyond Single Attributes

EMNLP, 2024
Yusuke Hirota, Jerone Andrews, Dora Zhao*, Orestis Papakyriakopoulos*, Apostolos Modas, Yuta Nakashima*, Alice Xiang

We tackle societal bias in image-text datasets by removing spurious correlations between protected groups and image attributes. Traditional methods only target labeled attributes, ignoring biases from unlabeled ones. Using text-guided inpainting models, our approach ensures …

Efficient Bias Mitigation Without Privileged Information

ECCV, 2024
Mateo Espinosa Zarlenga*, Swami Sankaranarayanan, Jerone Andrews, Zohreh Shams, Mateja Jamnik*, Alice Xiang

Deep neural networks trained via empirical risk minimisation often exhibit significant performance disparities across groups, particularly when group and task labels are spuriously correlated (e.g., “grassy background” and “cows”). Existing bias mitigation methods that aim t…

  • HOME
  • Publications
  • Beyond Skin Tone: A Multidimensional Measure of Apparent Skin Color

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.