Authors

* External authors

Venue

Date

Share

Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting

Yuchen Liu*

Chen Chen

Lingjuan Lyu

Fangzhao Wu*

Sai Wu*

Gang Chen*

* External authors

ICML 2023

2023

Abstract

Federated learning has exhibited vulnerabilities to Byzantine attacks, where the Byzantine attackers can send arbitrary gradients to the central server to destroy the convergence and performance of the global model. A wealth of defenses have been proposed to defend against Byzantine attacks. However, Byzantine clients can still circumvent defense when the data is non-identically and independently distributed (non-IID). In this paper, we first reveal the root causes of current robust AGgregation Rule (AGR) performance degradation in non-IID settings: the curse of dimensionality and gradient heterogeneity. In order to address this issue, we propose GAS, a gradient splitting based approach that can successfully adapt existing robust AGRs to ensure Byzantine robustness under non-IID settings. We also provide a detailed convergence analysis when the existing robust AGRs are adapted to GAS. Experiments on various real-world datasets verify the efficacy of our proposed GAS.

Related Publications

A Simple Background Augmentation Method for Object Detection with Diffusion Model

ECCV, 2024
Yuhang Li, Xin Dong, Chen Chen, Weiming Zhuang, Lingjuan Lyu

In computer vision, it is well-known that a lack of data diversity will impair model performance. In this study, we address the challenges of enhancing the dataset diversity problem in order to benefit various downstream tasks such as object detection and instance segmentati…

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

  • HOME
  • Publications
  • Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.