Venue
- ICML 2023
Date
- 2023
Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting
Yuchen Liu*
Chen Chen
Fangzhao Wu*
Sai Wu*
Gang Chen*
* External authors
ICML 2023
2023
Abstract
Federated learning has exhibited vulnerabilities to Byzantine attacks, where the Byzantine attackers can send arbitrary gradients to the central server to destroy the convergence and performance of the global model. A wealth of defenses have been proposed to defend against Byzantine attacks. However, Byzantine clients can still circumvent defense when the data is non-identically and independently distributed (non-IID). In this paper, we first reveal the root causes of current robust AGgregation Rule (AGR) performance degradation in non-IID settings: the curse of dimensionality and gradient heterogeneity. In order to address this issue, we propose GAS, a gradient splitting based approach that can successfully adapt existing robust AGRs to ensure Byzantine robustness under non-IID settings. We also provide a detailed convergence analysis when the existing robust AGRs are adapted to GAS. Experiments on various real-world datasets verify the efficacy of our proposed GAS.
Related Publications
Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Image…
With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearn…
This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneo…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.