Authors

Venue

Date

Share

CCStereo: Audio-Visual Contextual and Contrastive Learning for Binaural Audio Generation

Yuanhong Chen

Kazuki Shimada

Christian Simon

Yukara Ikemiya

Takashi Shibuya

Yuki Mitsufuji

ACMMM-25

2025

Abstract

Binaural audio generation (BAG) aims to convert monaural audio to stereo audio using visual prompts, requiring a deep understanding of spatial and semantic information. The success of the BAG systems depends on the effectiveness of cross-modal reasoning and spatial understanding. Current methods have explored the use of visual information as guidance for binaural audio generation. However, they rely solely on cross-attention mechanisms to guide the generation process and under-utilise the temporal and spatial information in video data during training and inference. These limitations result in the loss of fine-grained spatial details and risk overfitting to specific environments, ultimately constraining model performance. In this paper, we address the aforementioned issues by introducing a new audio-visual binaural generation model incorporating an audio-visual conditional normalisation layer that dynamically aligns the mean and variance of the target difference audio features using visual context, along with a new contrastive learning method to enhance spatial sensitivity by mining negative samples from shuffled visual features. We also introduce a cost-efficient way to utilise test-time augmentation in video data to enhance performance. Our approach achieves state-of-the-art generation accuracy on the FAIR-Play, MUSIC-Stereo, and YT-MUSIC benchmarks. Code will be released.

Related Publications

Music Arena: Live Evaluation for Text-to-Music

NeurIPS, 2025
Yonghyun Kim, Wayne Chi, Anastasios N. Angelopoulos, Wei-Lin Chiang, Koichi Saito, Shinji Watanabe, Yuki Mitsufuji, Chris Donahue

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

NeurIPS, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

Blind Inverse Problem Solving Made Easy by Text-to-Image Latent Diffusion

NeurIPS, 2025
Michail Dontas, Yutong He, Naoki Murata, Yuki Mitsufuji, J. Zico Kolter*, Ruslan Salakhutdinov*

Blind inverse problems, where both the target data and forward operator are unknown, are crucial to many computer vision applications. Existing methods often depend on restrictive assumptions such as additional training, operator linearity, or narrow image distributions, thu…

  • HOME
  • Publications
  • CCStereo: Audio-Visual Contextual and Contrastive Learning for Binaural Audio Generation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.